'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
     , active(__(X, nil())) -> mark(X)
     , active(__(nil(), X)) -> mark(X)
     , active(and(tt(), X)) -> mark(X)
     , active(isList(V)) -> mark(isNeList(V))
     , active(isList(nil())) -> mark(tt())
     , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
     , active(isNeList(V)) -> mark(isQid(V))
     , active(isNeList(__(V1, V2))) ->
       mark(and(isList(V1), isNeList(V2)))
     , active(isNeList(__(V1, V2))) ->
       mark(and(isNeList(V1), isList(V2)))
     , active(isNePal(V)) -> mark(isQid(V))
     , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
     , active(isPal(V)) -> mark(isNePal(V))
     , active(isPal(nil())) -> mark(tt())
     , active(isQid(a())) -> mark(tt())
     , active(isQid(e())) -> mark(tt())
     , active(isQid(i())) -> mark(tt())
     , active(isQid(o())) -> mark(tt())
     , active(isQid(u())) -> mark(tt())
     , active(__(X1, X2)) -> __(active(X1), X2)
     , active(__(X1, X2)) -> __(X1, active(X2))
     , active(and(X1, X2)) -> and(active(X1), X2)
     , __(mark(X1), X2) -> mark(__(X1, X2))
     , __(X1, mark(X2)) -> mark(__(X1, X2))
     , and(mark(X1), X2) -> mark(and(X1, X2))
     , proper(__(X1, X2)) -> __(proper(X1), proper(X2))
     , proper(nil()) -> ok(nil())
     , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
     , proper(tt()) -> ok(tt())
     , proper(isList(X)) -> isList(proper(X))
     , proper(isNeList(X)) -> isNeList(proper(X))
     , proper(isQid(X)) -> isQid(proper(X))
     , proper(isNePal(X)) -> isNePal(proper(X))
     , proper(isPal(X)) -> isPal(proper(X))
     , proper(a()) -> ok(a())
     , proper(e()) -> ok(e())
     , proper(i()) -> ok(i())
     , proper(o()) -> ok(o())
     , proper(u()) -> ok(u())
     , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
     , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
     , isList(ok(X)) -> ok(isList(X))
     , isNeList(ok(X)) -> ok(isNeList(X))
     , isQid(ok(X)) -> ok(isQid(X))
     , isNePal(ok(X)) -> ok(isNePal(X))
     , isPal(ok(X)) -> ok(isPal(X))
     , top(mark(X)) -> top(proper(X))
     , top(ok(X)) -> top(active(X))}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))
    , active^#(__(X, nil())) -> c_1()
    , active^#(__(nil(), X)) -> c_2()
    , active^#(and(tt(), X)) -> c_3()
    , active^#(isList(V)) -> c_4(isNeList^#(V))
    , active^#(isList(nil())) -> c_5()
    , active^#(isList(__(V1, V2))) ->
      c_6(and^#(isList(V1), isList(V2)))
    , active^#(isNeList(V)) -> c_7(isQid^#(V))
    , active^#(isNeList(__(V1, V2))) ->
      c_8(and^#(isList(V1), isNeList(V2)))
    , active^#(isNeList(__(V1, V2))) ->
      c_9(and^#(isNeList(V1), isList(V2)))
    , active^#(isNePal(V)) -> c_10(isQid^#(V))
    , active^#(isNePal(__(I, __(P, I)))) ->
      c_11(and^#(isQid(I), isPal(P)))
    , active^#(isPal(V)) -> c_12(isNePal^#(V))
    , active^#(isPal(nil())) -> c_13()
    , active^#(isQid(a())) -> c_14()
    , active^#(isQid(e())) -> c_15()
    , active^#(isQid(i())) -> c_16()
    , active^#(isQid(o())) -> c_17()
    , active^#(isQid(u())) -> c_18()
    , active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))
    , active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))
    , active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))
    , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))
    , __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
    , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))
    , proper^#(__(X1, X2)) -> c_25(__^#(proper(X1), proper(X2)))
    , proper^#(nil()) -> c_26()
    , proper^#(and(X1, X2)) -> c_27(and^#(proper(X1), proper(X2)))
    , proper^#(tt()) -> c_28()
    , proper^#(isList(X)) -> c_29(isList^#(proper(X)))
    , proper^#(isNeList(X)) -> c_30(isNeList^#(proper(X)))
    , proper^#(isQid(X)) -> c_31(isQid^#(proper(X)))
    , proper^#(isNePal(X)) -> c_32(isNePal^#(proper(X)))
    , proper^#(isPal(X)) -> c_33(isPal^#(proper(X)))
    , proper^#(a()) -> c_34()
    , proper^#(e()) -> c_35()
    , proper^#(i()) -> c_36()
    , proper^#(o()) -> c_37()
    , proper^#(u()) -> c_38()
    , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))
    , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
    , isList^#(ok(X)) -> c_41(isList^#(X))
    , isNeList^#(ok(X)) -> c_42(isNeList^#(X))
    , isQid^#(ok(X)) -> c_43(isQid^#(X))
    , isNePal^#(ok(X)) -> c_44(isNePal^#(X))
    , isPal^#(ok(X)) -> c_45(isPal^#(X))
    , top^#(mark(X)) -> c_46(top^#(proper(X)))
    , top^#(ok(X)) -> c_47(top^#(active(X)))}
  
  The usable rules are:
   {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
    , active(__(X, nil())) -> mark(X)
    , active(__(nil(), X)) -> mark(X)
    , active(and(tt(), X)) -> mark(X)
    , active(isList(V)) -> mark(isNeList(V))
    , active(isList(nil())) -> mark(tt())
    , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
    , active(isNeList(V)) -> mark(isQid(V))
    , active(isNeList(__(V1, V2))) ->
      mark(and(isList(V1), isNeList(V2)))
    , active(isNeList(__(V1, V2))) ->
      mark(and(isNeList(V1), isList(V2)))
    , active(isNePal(V)) -> mark(isQid(V))
    , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
    , active(isPal(V)) -> mark(isNePal(V))
    , active(isPal(nil())) -> mark(tt())
    , active(isQid(a())) -> mark(tt())
    , active(isQid(e())) -> mark(tt())
    , active(isQid(i())) -> mark(tt())
    , active(isQid(o())) -> mark(tt())
    , active(isQid(u())) -> mark(tt())
    , active(__(X1, X2)) -> __(active(X1), X2)
    , active(__(X1, X2)) -> __(X1, active(X2))
    , active(and(X1, X2)) -> and(active(X1), X2)
    , __(mark(X1), X2) -> mark(__(X1, X2))
    , __(X1, mark(X2)) -> mark(__(X1, X2))
    , proper(__(X1, X2)) -> __(proper(X1), proper(X2))
    , proper(nil()) -> ok(nil())
    , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
    , proper(tt()) -> ok(tt())
    , proper(isList(X)) -> isList(proper(X))
    , proper(isNeList(X)) -> isNeList(proper(X))
    , proper(isQid(X)) -> isQid(proper(X))
    , proper(isNePal(X)) -> isNePal(proper(X))
    , proper(isPal(X)) -> isPal(proper(X))
    , proper(a()) -> ok(a())
    , proper(e()) -> ok(e())
    , proper(i()) -> ok(i())
    , proper(o()) -> ok(o())
    , proper(u()) -> ok(u())
    , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
    , isList(ok(X)) -> ok(isList(X))
    , isNeList(ok(X)) -> ok(isNeList(X))
    , isQid(ok(X)) -> ok(isQid(X))
    , isPal(ok(X)) -> ok(isPal(X))
    , and(mark(X1), X2) -> mark(and(X1, X2))
    , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
    , isNePal(ok(X)) -> ok(isNePal(X))}
  
  The estimated dependency graph contains the following edges:
   {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
     ==> {__^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))}
   {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
     ==> {__^#(X1, mark(X2)) -> c_23(__^#(X1, X2))}
   {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
     ==> {__^#(mark(X1), X2) -> c_22(__^#(X1, X2))}
   {active^#(isList(V)) -> c_4(isNeList^#(V))}
     ==> {isNeList^#(ok(X)) -> c_42(isNeList^#(X))}
   {active^#(isList(__(V1, V2))) ->
    c_6(and^#(isList(V1), isList(V2)))}
     ==> {and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
   {active^#(isList(__(V1, V2))) ->
    c_6(and^#(isList(V1), isList(V2)))}
     ==> {and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
   {active^#(isNeList(V)) -> c_7(isQid^#(V))}
     ==> {isQid^#(ok(X)) -> c_43(isQid^#(X))}
   {active^#(isNeList(__(V1, V2))) ->
    c_8(and^#(isList(V1), isNeList(V2)))}
     ==> {and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
   {active^#(isNeList(__(V1, V2))) ->
    c_8(and^#(isList(V1), isNeList(V2)))}
     ==> {and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
   {active^#(isNeList(__(V1, V2))) ->
    c_9(and^#(isNeList(V1), isList(V2)))}
     ==> {and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
   {active^#(isNeList(__(V1, V2))) ->
    c_9(and^#(isNeList(V1), isList(V2)))}
     ==> {and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
   {active^#(isNePal(V)) -> c_10(isQid^#(V))}
     ==> {isQid^#(ok(X)) -> c_43(isQid^#(X))}
   {active^#(isNePal(__(I, __(P, I)))) ->
    c_11(and^#(isQid(I), isPal(P)))}
     ==> {and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
   {active^#(isNePal(__(I, __(P, I)))) ->
    c_11(and^#(isQid(I), isPal(P)))}
     ==> {and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
   {active^#(isPal(V)) -> c_12(isNePal^#(V))}
     ==> {isNePal^#(ok(X)) -> c_44(isNePal^#(X))}
   {active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))}
     ==> {__^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))}
   {active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))}
     ==> {__^#(X1, mark(X2)) -> c_23(__^#(X1, X2))}
   {active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))}
     ==> {__^#(mark(X1), X2) -> c_22(__^#(X1, X2))}
   {active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))}
     ==> {__^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))}
   {active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))}
     ==> {__^#(X1, mark(X2)) -> c_23(__^#(X1, X2))}
   {active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))}
     ==> {__^#(mark(X1), X2) -> c_22(__^#(X1, X2))}
   {active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))}
     ==> {and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
   {active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))}
     ==> {and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
   {__^#(mark(X1), X2) -> c_22(__^#(X1, X2))}
     ==> {__^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))}
   {__^#(mark(X1), X2) -> c_22(__^#(X1, X2))}
     ==> {__^#(X1, mark(X2)) -> c_23(__^#(X1, X2))}
   {__^#(mark(X1), X2) -> c_22(__^#(X1, X2))}
     ==> {__^#(mark(X1), X2) -> c_22(__^#(X1, X2))}
   {__^#(X1, mark(X2)) -> c_23(__^#(X1, X2))}
     ==> {__^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))}
   {__^#(X1, mark(X2)) -> c_23(__^#(X1, X2))}
     ==> {__^#(X1, mark(X2)) -> c_23(__^#(X1, X2))}
   {__^#(X1, mark(X2)) -> c_23(__^#(X1, X2))}
     ==> {__^#(mark(X1), X2) -> c_22(__^#(X1, X2))}
   {and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
     ==> {and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
   {and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
     ==> {and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
   {proper^#(__(X1, X2)) -> c_25(__^#(proper(X1), proper(X2)))}
     ==> {__^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))}
   {proper^#(__(X1, X2)) -> c_25(__^#(proper(X1), proper(X2)))}
     ==> {__^#(X1, mark(X2)) -> c_23(__^#(X1, X2))}
   {proper^#(__(X1, X2)) -> c_25(__^#(proper(X1), proper(X2)))}
     ==> {__^#(mark(X1), X2) -> c_22(__^#(X1, X2))}
   {proper^#(and(X1, X2)) -> c_27(and^#(proper(X1), proper(X2)))}
     ==> {and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
   {proper^#(and(X1, X2)) -> c_27(and^#(proper(X1), proper(X2)))}
     ==> {and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
   {proper^#(isList(X)) -> c_29(isList^#(proper(X)))}
     ==> {isList^#(ok(X)) -> c_41(isList^#(X))}
   {proper^#(isNeList(X)) -> c_30(isNeList^#(proper(X)))}
     ==> {isNeList^#(ok(X)) -> c_42(isNeList^#(X))}
   {proper^#(isQid(X)) -> c_31(isQid^#(proper(X)))}
     ==> {isQid^#(ok(X)) -> c_43(isQid^#(X))}
   {proper^#(isNePal(X)) -> c_32(isNePal^#(proper(X)))}
     ==> {isNePal^#(ok(X)) -> c_44(isNePal^#(X))}
   {proper^#(isPal(X)) -> c_33(isPal^#(proper(X)))}
     ==> {isPal^#(ok(X)) -> c_45(isPal^#(X))}
   {__^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))}
     ==> {__^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))}
   {__^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))}
     ==> {__^#(X1, mark(X2)) -> c_23(__^#(X1, X2))}
   {__^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))}
     ==> {__^#(mark(X1), X2) -> c_22(__^#(X1, X2))}
   {and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
     ==> {and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
   {and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
     ==> {and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
   {isList^#(ok(X)) -> c_41(isList^#(X))}
     ==> {isList^#(ok(X)) -> c_41(isList^#(X))}
   {isNeList^#(ok(X)) -> c_42(isNeList^#(X))}
     ==> {isNeList^#(ok(X)) -> c_42(isNeList^#(X))}
   {isQid^#(ok(X)) -> c_43(isQid^#(X))}
     ==> {isQid^#(ok(X)) -> c_43(isQid^#(X))}
   {isNePal^#(ok(X)) -> c_44(isNePal^#(X))}
     ==> {isNePal^#(ok(X)) -> c_44(isNePal^#(X))}
   {isPal^#(ok(X)) -> c_45(isPal^#(X))}
     ==> {isPal^#(ok(X)) -> c_45(isPal^#(X))}
   {top^#(mark(X)) -> c_46(top^#(proper(X)))}
     ==> {top^#(ok(X)) -> c_47(top^#(active(X)))}
   {top^#(mark(X)) -> c_46(top^#(proper(X)))}
     ==> {top^#(mark(X)) -> c_46(top^#(proper(X)))}
   {top^#(ok(X)) -> c_47(top^#(active(X)))}
     ==> {top^#(ok(X)) -> c_47(top^#(active(X)))}
   {top^#(ok(X)) -> c_47(top^#(active(X)))}
     ==> {top^#(mark(X)) -> c_46(top^#(proper(X)))}
  
  We consider the following path(s):
   1) {  top^#(mark(X)) -> c_46(top^#(proper(X)))
       , top^#(ok(X)) -> c_47(top^#(active(X)))}
      
      The usable rules for this path are the following:
      {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
       , active(__(X, nil())) -> mark(X)
       , active(__(nil(), X)) -> mark(X)
       , active(and(tt(), X)) -> mark(X)
       , active(isList(V)) -> mark(isNeList(V))
       , active(isList(nil())) -> mark(tt())
       , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
       , active(isNeList(V)) -> mark(isQid(V))
       , active(isNeList(__(V1, V2))) ->
         mark(and(isList(V1), isNeList(V2)))
       , active(isNeList(__(V1, V2))) ->
         mark(and(isNeList(V1), isList(V2)))
       , active(isNePal(V)) -> mark(isQid(V))
       , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
       , active(isPal(V)) -> mark(isNePal(V))
       , active(isPal(nil())) -> mark(tt())
       , active(isQid(a())) -> mark(tt())
       , active(isQid(e())) -> mark(tt())
       , active(isQid(i())) -> mark(tt())
       , active(isQid(o())) -> mark(tt())
       , active(isQid(u())) -> mark(tt())
       , active(__(X1, X2)) -> __(active(X1), X2)
       , active(__(X1, X2)) -> __(X1, active(X2))
       , active(and(X1, X2)) -> and(active(X1), X2)
       , proper(__(X1, X2)) -> __(proper(X1), proper(X2))
       , proper(nil()) -> ok(nil())
       , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(isList(X)) -> isList(proper(X))
       , proper(isNeList(X)) -> isNeList(proper(X))
       , proper(isQid(X)) -> isQid(proper(X))
       , proper(isNePal(X)) -> isNePal(proper(X))
       , proper(isPal(X)) -> isPal(proper(X))
       , proper(a()) -> ok(a())
       , proper(e()) -> ok(e())
       , proper(i()) -> ok(i())
       , proper(o()) -> ok(o())
       , proper(u()) -> ok(u())
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , isList(ok(X)) -> ok(isList(X))
       , isNeList(ok(X)) -> ok(isNeList(X))
       , isQid(ok(X)) -> ok(isQid(X))
       , isPal(ok(X)) -> ok(isPal(X))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
               , active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)
               , active(and(tt(), X)) -> mark(X)
               , active(isList(V)) -> mark(isNeList(V))
               , active(isList(nil())) -> mark(tt())
               , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
               , active(isNeList(V)) -> mark(isQid(V))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isList(V1), isNeList(V2)))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isNeList(V1), isList(V2)))
               , active(isNePal(V)) -> mark(isQid(V))
               , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
               , active(isPal(V)) -> mark(isNePal(V))
               , active(isPal(nil())) -> mark(tt())
               , active(isQid(a())) -> mark(tt())
               , active(isQid(e())) -> mark(tt())
               , active(isQid(i())) -> mark(tt())
               , active(isQid(o())) -> mark(tt())
               , active(isQid(u())) -> mark(tt())
               , active(__(X1, X2)) -> __(active(X1), X2)
               , active(__(X1, X2)) -> __(X1, active(X2))
               , active(and(X1, X2)) -> and(active(X1), X2)
               , proper(__(X1, X2)) -> __(proper(X1), proper(X2))
               , proper(nil()) -> ok(nil())
               , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(isList(X)) -> isList(proper(X))
               , proper(isNeList(X)) -> isNeList(proper(X))
               , proper(isQid(X)) -> isQid(proper(X))
               , proper(isNePal(X)) -> isNePal(proper(X))
               , proper(isPal(X)) -> isPal(proper(X))
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , isList(ok(X)) -> ok(isList(X))
               , isNeList(ok(X)) -> ok(isNeList(X))
               , isQid(ok(X)) -> ok(isQid(X))
               , isPal(ok(X)) -> ok(isPal(X))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , top^#(mark(X)) -> c_46(top^#(proper(X)))
               , top^#(ok(X)) -> c_47(top^#(active(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(nil()) -> ok(nil())
               , proper(tt()) -> ok(tt())
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_46(x1) = [1] x1 + [0]
                  c_47(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {  proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_46(x1) = [1] x1 + [1]
                  c_47(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {top^#(ok(X)) -> c_47(top^#(active(X)))}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {top^#(ok(X)) -> c_47(top^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [9]
                  ok(x1) = [1] x1 + [9]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_46(x1) = [1] x1 + [0]
                  c_47(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isQid(u())) -> mark(tt())}
            and weakly orienting the rules
            {  top^#(ok(X)) -> c_47(top^#(active(X)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isQid(u())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [1]
                  proper(x1) = [1] x1 + [2]
                  ok(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_46(x1) = [1] x1 + [1]
                  c_47(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(a())) -> mark(tt())}
            and weakly orienting the rules
            {  active(isQid(u())) -> mark(tt())
             , top^#(ok(X)) -> c_47(top^#(active(X)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(isNeList(V)) -> mark(isQid(V))
               , active(isQid(a())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [2]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [4]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [3]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [2]
                  c_46(x1) = [1] x1 + [0]
                  c_47(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())
             , active(isQid(e())) -> mark(tt())}
            and weakly orienting the rules
            {  active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , top^#(ok(X)) -> c_47(top^#(active(X)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(isPal(V)) -> mark(isNePal(V))
               , active(isPal(nil())) -> mark(tt())
               , active(isQid(e())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [10]
                  a() = [13]
                  e() = [2]
                  i() = [0]
                  o() = [0]
                  u() = [2]
                  proper(x1) = [1] x1 + [3]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [4]
                  c_46(x1) = [1] x1 + [0]
                  c_47(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isQid(o())) -> mark(tt())}
            and weakly orienting the rules
            {  active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())
             , active(isQid(e())) -> mark(tt())
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , top^#(ok(X)) -> c_47(top^#(active(X)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isQid(o())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [2]
                  a() = [0]
                  e() = [4]
                  i() = [0]
                  o() = [4]
                  u() = [0]
                  proper(x1) = [1] x1 + [12]
                  ok(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [7]
                  c_46(x1) = [1] x1 + [0]
                  c_47(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isQid(i())) -> mark(tt())}
            and weakly orienting the rules
            {  active(isQid(o())) -> mark(tt())
             , active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())
             , active(isQid(e())) -> mark(tt())
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , top^#(ok(X)) -> c_47(top^#(active(X)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isQid(i())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [1]
                  a() = [0]
                  e() = [0]
                  i() = [1]
                  o() = [2]
                  u() = [1]
                  proper(x1) = [1] x1 + [4]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_46(x1) = [1] x1 + [1]
                  c_47(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isNePal(V)) -> mark(isQid(V))}
            and weakly orienting the rules
            {  active(isQid(i())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())
             , active(isQid(e())) -> mark(tt())
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , top^#(ok(X)) -> c_47(top^#(active(X)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isNePal(V)) -> mark(isQid(V))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [4]
                  isPal(x1) = [1] x1 + [8]
                  a() = [8]
                  e() = [0]
                  i() = [1]
                  o() = [1]
                  u() = [8]
                  proper(x1) = [1] x1 + [8]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_46(x1) = [1] x1 + [9]
                  c_47(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(isList(V)) -> mark(isNeList(V))
             , active(isList(nil())) -> mark(tt())}
            and weakly orienting the rules
            {  active(isNePal(V)) -> mark(isQid(V))
             , active(isQid(i())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())
             , active(isQid(e())) -> mark(tt())
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , top^#(ok(X)) -> c_47(top^#(active(X)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(isList(V)) -> mark(isNeList(V))
               , active(isList(nil())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [8]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [8]
                  a() = [0]
                  e() = [0]
                  i() = [2]
                  o() = [0]
                  u() = [6]
                  proper(x1) = [1] x1 + [4]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [12]
                  c_46(x1) = [1] x1 + [1]
                  c_47(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)}
            and weakly orienting the rules
            {  active(isList(V)) -> mark(isNeList(V))
             , active(isList(nil())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , active(isQid(i())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())
             , active(isQid(e())) -> mark(tt())
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , top^#(ok(X)) -> c_47(top^#(active(X)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [1]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [14]
                  isNeList(x1) = [1] x1 + [14]
                  isQid(x1) = [1] x1 + [14]
                  isNePal(x1) = [1] x1 + [14]
                  isPal(x1) = [1] x1 + [14]
                  a() = [3]
                  e() = [1]
                  i() = [0]
                  o() = [3]
                  u() = [1]
                  proper(x1) = [1] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [8]
                  c_46(x1) = [1] x1 + [3]
                  c_47(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , active(isNePal(__(I, __(P, I)))) ->
               mark(and(isQid(I), isPal(P)))}
            and weakly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)
             , active(isList(V)) -> mark(isNeList(V))
             , active(isList(nil())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , active(isQid(i())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())
             , active(isQid(e())) -> mark(tt())
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , top^#(ok(X)) -> c_47(top^#(active(X)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(and(tt(), X)) -> mark(X)
               , active(isNePal(__(I, __(P, I)))) ->
                 mark(and(isQid(I), isPal(P)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [7]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [4]
                  tt() = [5]
                  isList(x1) = [1] x1 + [8]
                  isNeList(x1) = [1] x1 + [2]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [8]
                  a() = [9]
                  e() = [5]
                  i() = [9]
                  o() = [8]
                  u() = [10]
                  proper(x1) = [1] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_46(x1) = [1] x1 + [0]
                  c_47(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
             , active(isNeList(__(V1, V2))) ->
               mark(and(isList(V1), isNeList(V2)))
             , active(isNeList(__(V1, V2))) ->
               mark(and(isNeList(V1), isList(V2)))}
            and weakly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
             , active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)
             , active(isList(V)) -> mark(isNeList(V))
             , active(isList(nil())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , active(isQid(i())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())
             , active(isQid(e())) -> mark(tt())
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , top^#(ok(X)) -> c_47(top^#(active(X)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isList(V1), isNeList(V2)))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isNeList(V1), isList(V2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [2]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [1]
                  e() = [9]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_46(x1) = [1] x1 + [0]
                  c_47(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))}
            and weakly orienting the rules
            {  active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
             , active(isNeList(__(V1, V2))) ->
               mark(and(isList(V1), isNeList(V2)))
             , active(isNeList(__(V1, V2))) ->
               mark(and(isNeList(V1), isList(V2)))
             , active(and(tt(), X)) -> mark(X)
             , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
             , active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)
             , active(isList(V)) -> mark(isNeList(V))
             , active(isList(nil())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , active(isQid(i())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())
             , active(isQid(e())) -> mark(tt())
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , top^#(ok(X)) -> c_47(top^#(active(X)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [2]
                  __(x1, x2) = [1] x1 + [1] x2 + [8]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [2]
                  tt() = [0]
                  isList(x1) = [1] x1 + [6]
                  isNeList(x1) = [1] x1 + [8]
                  isQid(x1) = [1] x1 + [2]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [8]
                  a() = [0]
                  e() = [12]
                  i() = [1]
                  o() = [3]
                  u() = [2]
                  proper(x1) = [1] x1 + [8]
                  ok(x1) = [1] x1 + [5]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [3]
                  c_46(x1) = [1] x1 + [0]
                  c_47(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(__(X1, X2)) -> __(active(X1), X2)
                 , active(__(X1, X2)) -> __(X1, active(X2))
                 , active(and(X1, X2)) -> and(active(X1), X2)
                 , proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                 , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(isList(X)) -> isList(proper(X))
                 , proper(isNeList(X)) -> isNeList(proper(X))
                 , proper(isQid(X)) -> isQid(proper(X))
                 , proper(isNePal(X)) -> isNePal(proper(X))
                 , proper(isPal(X)) -> isPal(proper(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , isList(ok(X)) -> ok(isList(X))
                 , isNeList(ok(X)) -> ok(isNeList(X))
                 , isQid(ok(X)) -> ok(isQid(X))
                 , isPal(ok(X)) -> ok(isPal(X))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(ok(X)) -> ok(isNePal(X))
                 , top^#(mark(X)) -> c_46(top^#(proper(X)))}
              Weak Rules:
                {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                 , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
                 , active(isNeList(__(V1, V2))) ->
                   mark(and(isList(V1), isNeList(V2)))
                 , active(isNeList(__(V1, V2))) ->
                   mark(and(isNeList(V1), isList(V2)))
                 , active(and(tt(), X)) -> mark(X)
                 , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
                 , active(__(X, nil())) -> mark(X)
                 , active(__(nil(), X)) -> mark(X)
                 , active(isList(V)) -> mark(isNeList(V))
                 , active(isList(nil())) -> mark(tt())
                 , active(isNePal(V)) -> mark(isQid(V))
                 , active(isQid(i())) -> mark(tt())
                 , active(isQid(o())) -> mark(tt())
                 , active(isPal(V)) -> mark(isNePal(V))
                 , active(isPal(nil())) -> mark(tt())
                 , active(isQid(e())) -> mark(tt())
                 , active(isNeList(V)) -> mark(isQid(V))
                 , active(isQid(a())) -> mark(tt())
                 , active(isQid(u())) -> mark(tt())
                 , top^#(ok(X)) -> c_47(top^#(active(X)))
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , proper(nil()) -> ok(nil())
                 , proper(tt()) -> ok(tt())
                 , proper(a()) -> ok(a())
                 , proper(e()) -> ok(e())
                 , proper(i()) -> ok(i())
                 , proper(o()) -> ok(o())
                 , proper(u()) -> ok(u())}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(__(X1, X2)) -> __(active(X1), X2)
                   , active(__(X1, X2)) -> __(X1, active(X2))
                   , active(and(X1, X2)) -> and(active(X1), X2)
                   , proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                   , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(isList(X)) -> isList(proper(X))
                   , proper(isNeList(X)) -> isNeList(proper(X))
                   , proper(isQid(X)) -> isQid(proper(X))
                   , proper(isNePal(X)) -> isNePal(proper(X))
                   , proper(isPal(X)) -> isPal(proper(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , isList(ok(X)) -> ok(isList(X))
                   , isNeList(ok(X)) -> ok(isNeList(X))
                   , isQid(ok(X)) -> ok(isQid(X))
                   , isPal(ok(X)) -> ok(isPal(X))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(ok(X)) -> ok(isNePal(X))
                   , top^#(mark(X)) -> c_46(top^#(proper(X)))}
                Weak Rules:
                  {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                   , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
                   , active(isNeList(__(V1, V2))) ->
                     mark(and(isList(V1), isNeList(V2)))
                   , active(isNeList(__(V1, V2))) ->
                     mark(and(isNeList(V1), isList(V2)))
                   , active(and(tt(), X)) -> mark(X)
                   , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
                   , active(__(X, nil())) -> mark(X)
                   , active(__(nil(), X)) -> mark(X)
                   , active(isList(V)) -> mark(isNeList(V))
                   , active(isList(nil())) -> mark(tt())
                   , active(isNePal(V)) -> mark(isQid(V))
                   , active(isQid(i())) -> mark(tt())
                   , active(isQid(o())) -> mark(tt())
                   , active(isPal(V)) -> mark(isNePal(V))
                   , active(isPal(nil())) -> mark(tt())
                   , active(isQid(e())) -> mark(tt())
                   , active(isNeList(V)) -> mark(isQid(V))
                   , active(isQid(a())) -> mark(tt())
                   , active(isQid(u())) -> mark(tt())
                   , top^#(ok(X)) -> c_47(top^#(active(X)))
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , proper(nil()) -> ok(nil())
                   , proper(tt()) -> ok(tt())
                   , proper(a()) -> ok(a())
                   , proper(e()) -> ok(e())
                   , proper(i()) -> ok(i())
                   , proper(o()) -> ok(o())
                   , proper(u()) -> ok(u())}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  active_0(2) -> 4
                 , active_1(2) -> 8
                 , active_1(9) -> 11
                 , mark_0(2) -> 2
                 , nil_0() -> 2
                 , nil_1() -> 9
                 , tt_0() -> 2
                 , tt_1() -> 9
                 , a_0() -> 2
                 , a_1() -> 9
                 , e_0() -> 2
                 , e_1() -> 9
                 , i_0() -> 2
                 , i_1() -> 9
                 , o_0() -> 2
                 , o_1() -> 9
                 , u_0() -> 2
                 , u_1() -> 9
                 , proper_1(2) -> 6
                 , ok_0(2) -> 2
                 , ok_1(9) -> 6
                 , top^#_0(2) -> 1
                 , top^#_0(4) -> 3
                 , top^#_1(6) -> 5
                 , top^#_1(8) -> 7
                 , top^#_1(11) -> 10
                 , c_46_1(5) -> 1
                 , c_47_0(3) -> 1
                 , c_47_1(7) -> 1
                 , c_47_1(10) -> 5}
      
   2) {active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))}
      
      The usable rules for this path are the following:
      {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
       , active(__(X, nil())) -> mark(X)
       , active(__(nil(), X)) -> mark(X)
       , active(and(tt(), X)) -> mark(X)
       , active(isList(V)) -> mark(isNeList(V))
       , active(isList(nil())) -> mark(tt())
       , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
       , active(isNeList(V)) -> mark(isQid(V))
       , active(isNeList(__(V1, V2))) ->
         mark(and(isList(V1), isNeList(V2)))
       , active(isNeList(__(V1, V2))) ->
         mark(and(isNeList(V1), isList(V2)))
       , active(isNePal(V)) -> mark(isQid(V))
       , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
       , active(isPal(V)) -> mark(isNePal(V))
       , active(isPal(nil())) -> mark(tt())
       , active(isQid(a())) -> mark(tt())
       , active(isQid(e())) -> mark(tt())
       , active(isQid(i())) -> mark(tt())
       , active(isQid(o())) -> mark(tt())
       , active(isQid(u())) -> mark(tt())
       , active(__(X1, X2)) -> __(active(X1), X2)
       , active(__(X1, X2)) -> __(X1, active(X2))
       , active(and(X1, X2)) -> and(active(X1), X2)
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , isList(ok(X)) -> ok(isList(X))
       , isNeList(ok(X)) -> ok(isNeList(X))
       , isQid(ok(X)) -> ok(isQid(X))
       , isPal(ok(X)) -> ok(isPal(X))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
               , active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)
               , active(and(tt(), X)) -> mark(X)
               , active(isList(V)) -> mark(isNeList(V))
               , active(isList(nil())) -> mark(tt())
               , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
               , active(isNeList(V)) -> mark(isQid(V))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isList(V1), isNeList(V2)))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isNeList(V1), isList(V2)))
               , active(isNePal(V)) -> mark(isQid(V))
               , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
               , active(isPal(V)) -> mark(isNePal(V))
               , active(isPal(nil())) -> mark(tt())
               , active(isQid(a())) -> mark(tt())
               , active(isQid(e())) -> mark(tt())
               , active(isQid(i())) -> mark(tt())
               , active(isQid(o())) -> mark(tt())
               , active(isQid(u())) -> mark(tt())
               , active(__(X1, X2)) -> __(active(X1), X2)
               , active(__(X1, X2)) -> __(X1, active(X2))
               , active(and(X1, X2)) -> and(active(X1), X2)
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , isList(ok(X)) -> ok(isList(X))
               , isNeList(ok(X)) -> ok(isNeList(X))
               , isQid(ok(X)) -> ok(isQid(X))
               , isPal(ok(X)) -> ok(isPal(X))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(isQid(e())) -> mark(tt())
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [15]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [5]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [1] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isNeList(V)) -> mark(isQid(V))}
            and weakly orienting the rules
            {  active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isNeList(V)) -> mark(isQid(V))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [4]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [1] x1 + [7]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))}
            and weakly orienting the rules
            {  active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [5]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [1] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isQid(o())) -> mark(tt())}
            and weakly orienting the rules
            {  active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isQid(o())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [12]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [1] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isQid(u())) -> mark(tt())}
            and weakly orienting the rules
            {  active(isQid(o())) -> mark(tt())
             , active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isQid(u())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [2]
                  u() = [4]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [1] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isQid(i())) -> mark(tt())}
            and weakly orienting the rules
            {  active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isQid(i())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [12]
                  i() = [8]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [1] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isQid(a())) -> mark(tt())}
            and weakly orienting the rules
            {  active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isQid(a())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [8]
                  e() = [0]
                  i() = [0]
                  o() = [8]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [1] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(isNePal(V)) -> mark(isQid(V))
             , active(isNePal(__(I, __(P, I)))) ->
               mark(and(isQid(I), isPal(P)))}
            and weakly orienting the rules
            {  active(isQid(a())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(isNePal(V)) -> mark(isQid(V))
               , active(isNePal(__(I, __(P, I)))) ->
                 mark(and(isQid(I), isPal(P)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [1]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [4]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [1] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isList(nil())) -> mark(tt())}
            and weakly orienting the rules
            {  active(isNePal(V)) -> mark(isQid(V))
             , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isList(nil())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [4]
                  isNeList(x1) = [1] x1 + [4]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [10]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [1] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isPal(nil())) -> mark(tt())}
            and weakly orienting the rules
            {  active(isList(nil())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isPal(nil())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [8]
                  isPal(x1) = [1] x1 + [1]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [1] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(and(tt(), X)) -> mark(X)}
            and weakly orienting the rules
            {  active(isPal(nil())) -> mark(tt())
             , active(isList(nil())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(and(tt(), X)) -> mark(X)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [8]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [8]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [12]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [1] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isList(V)) -> mark(isNeList(V))}
            and weakly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , active(isPal(nil())) -> mark(tt())
             , active(isList(nil())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isList(V)) -> mark(isNeList(V))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [8]
                  tt() = [0]
                  isList(x1) = [1] x1 + [8]
                  isNeList(x1) = [1] x1 + [1]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [8]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [15]
                  i() = [0]
                  o() = [8]
                  u() = [2]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [1] x1 + [1]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)}
            and weakly orienting the rules
            {  active(isList(V)) -> mark(isNeList(V))
             , active(and(tt(), X)) -> mark(X)
             , active(isPal(nil())) -> mark(tt())
             , active(isList(nil())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [6]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [8]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [8]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [8]
                  i() = [2]
                  o() = [9]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [1] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
             , active(isNeList(__(V1, V2))) ->
               mark(and(isList(V1), isNeList(V2)))
             , active(isNeList(__(V1, V2))) ->
               mark(and(isNeList(V1), isList(V2)))
             , active(isPal(V)) -> mark(isNePal(V))}
            and weakly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)
             , active(isList(V)) -> mark(isNeList(V))
             , active(and(tt(), X)) -> mark(X)
             , active(isPal(nil())) -> mark(tt())
             , active(isList(nil())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isList(V1), isNeList(V2)))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isNeList(V1), isList(V2)))
               , active(isPal(V)) -> mark(isNePal(V))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [2]
                  mark(x1) = [1] x1 + [0]
                  nil() = [14]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [4]
                  isPal(x1) = [1] x1 + [8]
                  a() = [0]
                  e() = [1]
                  i() = [2]
                  o() = [0]
                  u() = [1]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [1] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))}
            and weakly orienting the rules
            {  active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
             , active(isNeList(__(V1, V2))) ->
               mark(and(isList(V1), isNeList(V2)))
             , active(isNeList(__(V1, V2))) ->
               mark(and(isNeList(V1), isList(V2)))
             , active(isPal(V)) -> mark(isNePal(V))
             , active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)
             , active(isList(V)) -> mark(isNeList(V))
             , active(and(tt(), X)) -> mark(X)
             , active(isPal(nil())) -> mark(tt())
             , active(isList(nil())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [11]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [7]
                  and(x1, x2) = [1] x1 + [1] x2 + [4]
                  tt() = [0]
                  isList(x1) = [1] x1 + [5]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [1]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [1]
                  a() = [0]
                  e() = [3]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [1] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(__(X1, X2)) -> __(active(X1), X2)
                 , active(__(X1, X2)) -> __(X1, active(X2))
                 , active(and(X1, X2)) -> and(active(X1), X2)
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , isList(ok(X)) -> ok(isList(X))
                 , isNeList(ok(X)) -> ok(isNeList(X))
                 , isQid(ok(X)) -> ok(isQid(X))
                 , isPal(ok(X)) -> ok(isPal(X))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                 , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
                 , active(isNeList(__(V1, V2))) ->
                   mark(and(isList(V1), isNeList(V2)))
                 , active(isNeList(__(V1, V2))) ->
                   mark(and(isNeList(V1), isList(V2)))
                 , active(isPal(V)) -> mark(isNePal(V))
                 , active(__(X, nil())) -> mark(X)
                 , active(__(nil(), X)) -> mark(X)
                 , active(isList(V)) -> mark(isNeList(V))
                 , active(and(tt(), X)) -> mark(X)
                 , active(isPal(nil())) -> mark(tt())
                 , active(isList(nil())) -> mark(tt())
                 , active(isNePal(V)) -> mark(isQid(V))
                 , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
                 , active(isQid(a())) -> mark(tt())
                 , active(isQid(i())) -> mark(tt())
                 , active(isQid(u())) -> mark(tt())
                 , active(isQid(o())) -> mark(tt())
                 , active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))
                 , active(isNeList(V)) -> mark(isQid(V))
                 , active(isQid(e())) -> mark(tt())
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(__(X1, X2)) -> __(active(X1), X2)
                   , active(__(X1, X2)) -> __(X1, active(X2))
                   , active(and(X1, X2)) -> and(active(X1), X2)
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , isList(ok(X)) -> ok(isList(X))
                   , isNeList(ok(X)) -> ok(isNeList(X))
                   , isQid(ok(X)) -> ok(isQid(X))
                   , isPal(ok(X)) -> ok(isPal(X))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                   , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
                   , active(isNeList(__(V1, V2))) ->
                     mark(and(isList(V1), isNeList(V2)))
                   , active(isNeList(__(V1, V2))) ->
                     mark(and(isNeList(V1), isList(V2)))
                   , active(isPal(V)) -> mark(isNePal(V))
                   , active(__(X, nil())) -> mark(X)
                   , active(__(nil(), X)) -> mark(X)
                   , active(isList(V)) -> mark(isNeList(V))
                   , active(and(tt(), X)) -> mark(X)
                   , active(isPal(nil())) -> mark(tt())
                   , active(isList(nil())) -> mark(tt())
                   , active(isNePal(V)) -> mark(isQid(V))
                   , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
                   , active(isQid(a())) -> mark(tt())
                   , active(isQid(i())) -> mark(tt())
                   , active(isQid(u())) -> mark(tt())
                   , active(isQid(o())) -> mark(tt())
                   , active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))
                   , active(isNeList(V)) -> mark(isQid(V))
                   , active(isQid(e())) -> mark(tt())
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(4) -> 3
                 , mark_0(6) -> 3
                 , mark_0(12) -> 3
                 , mark_0(13) -> 3
                 , mark_0(14) -> 3
                 , mark_0(15) -> 3
                 , mark_0(16) -> 3
                 , mark_0(18) -> 3
                 , nil_0() -> 4
                 , tt_0() -> 6
                 , a_0() -> 12
                 , e_0() -> 13
                 , i_0() -> 14
                 , o_0() -> 15
                 , u_0() -> 16
                 , ok_0(3) -> 18
                 , ok_0(4) -> 18
                 , ok_0(6) -> 18
                 , ok_0(12) -> 18
                 , ok_0(13) -> 18
                 , ok_0(14) -> 18
                 , ok_0(15) -> 18
                 , ok_0(16) -> 18
                 , ok_0(18) -> 18
                 , active^#_0(3) -> 20
                 , active^#_0(4) -> 20
                 , active^#_0(6) -> 20
                 , active^#_0(12) -> 20
                 , active^#_0(13) -> 20
                 , active^#_0(14) -> 20
                 , active^#_0(15) -> 20
                 , active^#_0(16) -> 20
                 , active^#_0(18) -> 20
                 , and^#_0(3, 3) -> 30
                 , and^#_0(3, 4) -> 30
                 , and^#_0(3, 6) -> 30
                 , and^#_0(3, 12) -> 30
                 , and^#_0(3, 13) -> 30
                 , and^#_0(3, 14) -> 30
                 , and^#_0(3, 15) -> 30
                 , and^#_0(3, 16) -> 30
                 , and^#_0(3, 18) -> 30
                 , and^#_0(4, 3) -> 30
                 , and^#_0(4, 4) -> 30
                 , and^#_0(4, 6) -> 30
                 , and^#_0(4, 12) -> 30
                 , and^#_0(4, 13) -> 30
                 , and^#_0(4, 14) -> 30
                 , and^#_0(4, 15) -> 30
                 , and^#_0(4, 16) -> 30
                 , and^#_0(4, 18) -> 30
                 , and^#_0(6, 3) -> 30
                 , and^#_0(6, 4) -> 30
                 , and^#_0(6, 6) -> 30
                 , and^#_0(6, 12) -> 30
                 , and^#_0(6, 13) -> 30
                 , and^#_0(6, 14) -> 30
                 , and^#_0(6, 15) -> 30
                 , and^#_0(6, 16) -> 30
                 , and^#_0(6, 18) -> 30
                 , and^#_0(12, 3) -> 30
                 , and^#_0(12, 4) -> 30
                 , and^#_0(12, 6) -> 30
                 , and^#_0(12, 12) -> 30
                 , and^#_0(12, 13) -> 30
                 , and^#_0(12, 14) -> 30
                 , and^#_0(12, 15) -> 30
                 , and^#_0(12, 16) -> 30
                 , and^#_0(12, 18) -> 30
                 , and^#_0(13, 3) -> 30
                 , and^#_0(13, 4) -> 30
                 , and^#_0(13, 6) -> 30
                 , and^#_0(13, 12) -> 30
                 , and^#_0(13, 13) -> 30
                 , and^#_0(13, 14) -> 30
                 , and^#_0(13, 15) -> 30
                 , and^#_0(13, 16) -> 30
                 , and^#_0(13, 18) -> 30
                 , and^#_0(14, 3) -> 30
                 , and^#_0(14, 4) -> 30
                 , and^#_0(14, 6) -> 30
                 , and^#_0(14, 12) -> 30
                 , and^#_0(14, 13) -> 30
                 , and^#_0(14, 14) -> 30
                 , and^#_0(14, 15) -> 30
                 , and^#_0(14, 16) -> 30
                 , and^#_0(14, 18) -> 30
                 , and^#_0(15, 3) -> 30
                 , and^#_0(15, 4) -> 30
                 , and^#_0(15, 6) -> 30
                 , and^#_0(15, 12) -> 30
                 , and^#_0(15, 13) -> 30
                 , and^#_0(15, 14) -> 30
                 , and^#_0(15, 15) -> 30
                 , and^#_0(15, 16) -> 30
                 , and^#_0(15, 18) -> 30
                 , and^#_0(16, 3) -> 30
                 , and^#_0(16, 4) -> 30
                 , and^#_0(16, 6) -> 30
                 , and^#_0(16, 12) -> 30
                 , and^#_0(16, 13) -> 30
                 , and^#_0(16, 14) -> 30
                 , and^#_0(16, 15) -> 30
                 , and^#_0(16, 16) -> 30
                 , and^#_0(16, 18) -> 30
                 , and^#_0(18, 3) -> 30
                 , and^#_0(18, 4) -> 30
                 , and^#_0(18, 6) -> 30
                 , and^#_0(18, 12) -> 30
                 , and^#_0(18, 13) -> 30
                 , and^#_0(18, 14) -> 30
                 , and^#_0(18, 15) -> 30
                 , and^#_0(18, 16) -> 30
                 , and^#_0(18, 18) -> 30}
      
   3) {active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))}
      
      The usable rules for this path are the following:
      {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
       , active(__(X, nil())) -> mark(X)
       , active(__(nil(), X)) -> mark(X)
       , active(and(tt(), X)) -> mark(X)
       , active(isList(V)) -> mark(isNeList(V))
       , active(isList(nil())) -> mark(tt())
       , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
       , active(isNeList(V)) -> mark(isQid(V))
       , active(isNeList(__(V1, V2))) ->
         mark(and(isList(V1), isNeList(V2)))
       , active(isNeList(__(V1, V2))) ->
         mark(and(isNeList(V1), isList(V2)))
       , active(isNePal(V)) -> mark(isQid(V))
       , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
       , active(isPal(V)) -> mark(isNePal(V))
       , active(isPal(nil())) -> mark(tt())
       , active(isQid(a())) -> mark(tt())
       , active(isQid(e())) -> mark(tt())
       , active(isQid(i())) -> mark(tt())
       , active(isQid(o())) -> mark(tt())
       , active(isQid(u())) -> mark(tt())
       , active(__(X1, X2)) -> __(active(X1), X2)
       , active(__(X1, X2)) -> __(X1, active(X2))
       , active(and(X1, X2)) -> and(active(X1), X2)
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , isList(ok(X)) -> ok(isList(X))
       , isNeList(ok(X)) -> ok(isNeList(X))
       , isQid(ok(X)) -> ok(isQid(X))
       , isPal(ok(X)) -> ok(isPal(X))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
               , active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)
               , active(and(tt(), X)) -> mark(X)
               , active(isList(V)) -> mark(isNeList(V))
               , active(isList(nil())) -> mark(tt())
               , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
               , active(isNeList(V)) -> mark(isQid(V))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isList(V1), isNeList(V2)))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isNeList(V1), isList(V2)))
               , active(isNePal(V)) -> mark(isQid(V))
               , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
               , active(isPal(V)) -> mark(isNePal(V))
               , active(isPal(nil())) -> mark(tt())
               , active(isQid(a())) -> mark(tt())
               , active(isQid(e())) -> mark(tt())
               , active(isQid(i())) -> mark(tt())
               , active(isQid(o())) -> mark(tt())
               , active(isQid(u())) -> mark(tt())
               , active(__(X1, X2)) -> __(active(X1), X2)
               , active(__(X1, X2)) -> __(X1, active(X2))
               , active(and(X1, X2)) -> and(active(X1), X2)
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , isList(ok(X)) -> ok(isList(X))
               , isNeList(ok(X)) -> ok(isNeList(X))
               , isQid(ok(X)) -> ok(isQid(X))
               , isPal(ok(X)) -> ok(isPal(X))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(isQid(e())) -> mark(tt())
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [15]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [3]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isNeList(V)) -> mark(isQid(V))}
            and weakly orienting the rules
            {  active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isNeList(V)) -> mark(isQid(V))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [4]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [7]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))}
            and weakly orienting the rules
            {  active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [5]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isQid(o())) -> mark(tt())}
            and weakly orienting the rules
            {  active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isQid(o())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [12]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isQid(u())) -> mark(tt())}
            and weakly orienting the rules
            {  active(isQid(o())) -> mark(tt())
             , active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isQid(u())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [2]
                  u() = [4]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isQid(i())) -> mark(tt())}
            and weakly orienting the rules
            {  active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isQid(i())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [12]
                  i() = [8]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isQid(a())) -> mark(tt())}
            and weakly orienting the rules
            {  active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isQid(a())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [8]
                  e() = [0]
                  i() = [0]
                  o() = [8]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(isNePal(V)) -> mark(isQid(V))
             , active(isNePal(__(I, __(P, I)))) ->
               mark(and(isQid(I), isPal(P)))}
            and weakly orienting the rules
            {  active(isQid(a())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(isNePal(V)) -> mark(isQid(V))
               , active(isNePal(__(I, __(P, I)))) ->
                 mark(and(isQid(I), isPal(P)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [1]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [4]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isList(nil())) -> mark(tt())}
            and weakly orienting the rules
            {  active(isNePal(V)) -> mark(isQid(V))
             , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isList(nil())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [4]
                  isNeList(x1) = [1] x1 + [4]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [10]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isPal(nil())) -> mark(tt())}
            and weakly orienting the rules
            {  active(isList(nil())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isPal(nil())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [8]
                  isPal(x1) = [1] x1 + [1]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(and(tt(), X)) -> mark(X)}
            and weakly orienting the rules
            {  active(isPal(nil())) -> mark(tt())
             , active(isList(nil())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(and(tt(), X)) -> mark(X)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [8]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [8]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [12]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isList(V)) -> mark(isNeList(V))}
            and weakly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , active(isPal(nil())) -> mark(tt())
             , active(isList(nil())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isList(V)) -> mark(isNeList(V))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [8]
                  tt() = [0]
                  isList(x1) = [1] x1 + [8]
                  isNeList(x1) = [1] x1 + [1]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [8]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [15]
                  i() = [0]
                  o() = [8]
                  u() = [2]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [1]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)}
            and weakly orienting the rules
            {  active(isList(V)) -> mark(isNeList(V))
             , active(and(tt(), X)) -> mark(X)
             , active(isPal(nil())) -> mark(tt())
             , active(isList(nil())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [6]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [8]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [8]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [8]
                  i() = [2]
                  o() = [9]
                  u() = [8]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
             , active(isNeList(__(V1, V2))) ->
               mark(and(isList(V1), isNeList(V2)))
             , active(isNeList(__(V1, V2))) ->
               mark(and(isNeList(V1), isList(V2)))
             , active(isPal(V)) -> mark(isNePal(V))}
            and weakly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)
             , active(isList(V)) -> mark(isNeList(V))
             , active(and(tt(), X)) -> mark(X)
             , active(isPal(nil())) -> mark(tt())
             , active(isList(nil())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isList(V1), isNeList(V2)))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isNeList(V1), isList(V2)))
               , active(isPal(V)) -> mark(isNePal(V))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [2]
                  mark(x1) = [1] x1 + [0]
                  nil() = [14]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [4]
                  isPal(x1) = [1] x1 + [8]
                  a() = [0]
                  e() = [1]
                  i() = [2]
                  o() = [0]
                  u() = [1]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))}
            and weakly orienting the rules
            {  active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
             , active(isNeList(__(V1, V2))) ->
               mark(and(isList(V1), isNeList(V2)))
             , active(isNeList(__(V1, V2))) ->
               mark(and(isNeList(V1), isList(V2)))
             , active(isPal(V)) -> mark(isNePal(V))
             , active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)
             , active(isList(V)) -> mark(isNeList(V))
             , active(and(tt(), X)) -> mark(X)
             , active(isPal(nil())) -> mark(tt())
             , active(isList(nil())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [11]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [15]
                  and(x1, x2) = [1] x1 + [1] x2 + [4]
                  tt() = [2]
                  isList(x1) = [1] x1 + [5]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [1]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [13]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(__(X1, X2)) -> __(active(X1), X2)
                 , active(__(X1, X2)) -> __(X1, active(X2))
                 , active(and(X1, X2)) -> and(active(X1), X2)
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , isList(ok(X)) -> ok(isList(X))
                 , isNeList(ok(X)) -> ok(isNeList(X))
                 , isQid(ok(X)) -> ok(isQid(X))
                 , isPal(ok(X)) -> ok(isPal(X))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                 , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
                 , active(isNeList(__(V1, V2))) ->
                   mark(and(isList(V1), isNeList(V2)))
                 , active(isNeList(__(V1, V2))) ->
                   mark(and(isNeList(V1), isList(V2)))
                 , active(isPal(V)) -> mark(isNePal(V))
                 , active(__(X, nil())) -> mark(X)
                 , active(__(nil(), X)) -> mark(X)
                 , active(isList(V)) -> mark(isNeList(V))
                 , active(and(tt(), X)) -> mark(X)
                 , active(isPal(nil())) -> mark(tt())
                 , active(isList(nil())) -> mark(tt())
                 , active(isNePal(V)) -> mark(isQid(V))
                 , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
                 , active(isQid(a())) -> mark(tt())
                 , active(isQid(i())) -> mark(tt())
                 , active(isQid(u())) -> mark(tt())
                 , active(isQid(o())) -> mark(tt())
                 , active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))
                 , active(isNeList(V)) -> mark(isQid(V))
                 , active(isQid(e())) -> mark(tt())
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(__(X1, X2)) -> __(active(X1), X2)
                   , active(__(X1, X2)) -> __(X1, active(X2))
                   , active(and(X1, X2)) -> and(active(X1), X2)
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , isList(ok(X)) -> ok(isList(X))
                   , isNeList(ok(X)) -> ok(isNeList(X))
                   , isQid(ok(X)) -> ok(isQid(X))
                   , isPal(ok(X)) -> ok(isPal(X))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                   , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
                   , active(isNeList(__(V1, V2))) ->
                     mark(and(isList(V1), isNeList(V2)))
                   , active(isNeList(__(V1, V2))) ->
                     mark(and(isNeList(V1), isList(V2)))
                   , active(isPal(V)) -> mark(isNePal(V))
                   , active(__(X, nil())) -> mark(X)
                   , active(__(nil(), X)) -> mark(X)
                   , active(isList(V)) -> mark(isNeList(V))
                   , active(and(tt(), X)) -> mark(X)
                   , active(isPal(nil())) -> mark(tt())
                   , active(isList(nil())) -> mark(tt())
                   , active(isNePal(V)) -> mark(isQid(V))
                   , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
                   , active(isQid(a())) -> mark(tt())
                   , active(isQid(i())) -> mark(tt())
                   , active(isQid(u())) -> mark(tt())
                   , active(isQid(o())) -> mark(tt())
                   , active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))
                   , active(isNeList(V)) -> mark(isQid(V))
                   , active(isQid(e())) -> mark(tt())
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(4) -> 3
                 , mark_0(6) -> 3
                 , mark_0(12) -> 3
                 , mark_0(13) -> 3
                 , mark_0(14) -> 3
                 , mark_0(15) -> 3
                 , mark_0(16) -> 3
                 , mark_0(18) -> 3
                 , nil_0() -> 4
                 , tt_0() -> 6
                 , a_0() -> 12
                 , e_0() -> 13
                 , i_0() -> 14
                 , o_0() -> 15
                 , u_0() -> 16
                 , ok_0(3) -> 18
                 , ok_0(4) -> 18
                 , ok_0(6) -> 18
                 , ok_0(12) -> 18
                 , ok_0(13) -> 18
                 , ok_0(14) -> 18
                 , ok_0(15) -> 18
                 , ok_0(16) -> 18
                 , ok_0(18) -> 18
                 , active^#_0(3) -> 20
                 , active^#_0(4) -> 20
                 , active^#_0(6) -> 20
                 , active^#_0(12) -> 20
                 , active^#_0(13) -> 20
                 , active^#_0(14) -> 20
                 , active^#_0(15) -> 20
                 , active^#_0(16) -> 20
                 , active^#_0(18) -> 20
                 , __^#_0(3, 3) -> 22
                 , __^#_0(3, 4) -> 22
                 , __^#_0(3, 6) -> 22
                 , __^#_0(3, 12) -> 22
                 , __^#_0(3, 13) -> 22
                 , __^#_0(3, 14) -> 22
                 , __^#_0(3, 15) -> 22
                 , __^#_0(3, 16) -> 22
                 , __^#_0(3, 18) -> 22
                 , __^#_0(4, 3) -> 22
                 , __^#_0(4, 4) -> 22
                 , __^#_0(4, 6) -> 22
                 , __^#_0(4, 12) -> 22
                 , __^#_0(4, 13) -> 22
                 , __^#_0(4, 14) -> 22
                 , __^#_0(4, 15) -> 22
                 , __^#_0(4, 16) -> 22
                 , __^#_0(4, 18) -> 22
                 , __^#_0(6, 3) -> 22
                 , __^#_0(6, 4) -> 22
                 , __^#_0(6, 6) -> 22
                 , __^#_0(6, 12) -> 22
                 , __^#_0(6, 13) -> 22
                 , __^#_0(6, 14) -> 22
                 , __^#_0(6, 15) -> 22
                 , __^#_0(6, 16) -> 22
                 , __^#_0(6, 18) -> 22
                 , __^#_0(12, 3) -> 22
                 , __^#_0(12, 4) -> 22
                 , __^#_0(12, 6) -> 22
                 , __^#_0(12, 12) -> 22
                 , __^#_0(12, 13) -> 22
                 , __^#_0(12, 14) -> 22
                 , __^#_0(12, 15) -> 22
                 , __^#_0(12, 16) -> 22
                 , __^#_0(12, 18) -> 22
                 , __^#_0(13, 3) -> 22
                 , __^#_0(13, 4) -> 22
                 , __^#_0(13, 6) -> 22
                 , __^#_0(13, 12) -> 22
                 , __^#_0(13, 13) -> 22
                 , __^#_0(13, 14) -> 22
                 , __^#_0(13, 15) -> 22
                 , __^#_0(13, 16) -> 22
                 , __^#_0(13, 18) -> 22
                 , __^#_0(14, 3) -> 22
                 , __^#_0(14, 4) -> 22
                 , __^#_0(14, 6) -> 22
                 , __^#_0(14, 12) -> 22
                 , __^#_0(14, 13) -> 22
                 , __^#_0(14, 14) -> 22
                 , __^#_0(14, 15) -> 22
                 , __^#_0(14, 16) -> 22
                 , __^#_0(14, 18) -> 22
                 , __^#_0(15, 3) -> 22
                 , __^#_0(15, 4) -> 22
                 , __^#_0(15, 6) -> 22
                 , __^#_0(15, 12) -> 22
                 , __^#_0(15, 13) -> 22
                 , __^#_0(15, 14) -> 22
                 , __^#_0(15, 15) -> 22
                 , __^#_0(15, 16) -> 22
                 , __^#_0(15, 18) -> 22
                 , __^#_0(16, 3) -> 22
                 , __^#_0(16, 4) -> 22
                 , __^#_0(16, 6) -> 22
                 , __^#_0(16, 12) -> 22
                 , __^#_0(16, 13) -> 22
                 , __^#_0(16, 14) -> 22
                 , __^#_0(16, 15) -> 22
                 , __^#_0(16, 16) -> 22
                 , __^#_0(16, 18) -> 22
                 , __^#_0(18, 3) -> 22
                 , __^#_0(18, 4) -> 22
                 , __^#_0(18, 6) -> 22
                 , __^#_0(18, 12) -> 22
                 , __^#_0(18, 13) -> 22
                 , __^#_0(18, 14) -> 22
                 , __^#_0(18, 15) -> 22
                 , __^#_0(18, 16) -> 22
                 , __^#_0(18, 18) -> 22}
      
   4) {active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))}
      
      The usable rules for this path are the following:
      {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
       , active(__(X, nil())) -> mark(X)
       , active(__(nil(), X)) -> mark(X)
       , active(and(tt(), X)) -> mark(X)
       , active(isList(V)) -> mark(isNeList(V))
       , active(isList(nil())) -> mark(tt())
       , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
       , active(isNeList(V)) -> mark(isQid(V))
       , active(isNeList(__(V1, V2))) ->
         mark(and(isList(V1), isNeList(V2)))
       , active(isNeList(__(V1, V2))) ->
         mark(and(isNeList(V1), isList(V2)))
       , active(isNePal(V)) -> mark(isQid(V))
       , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
       , active(isPal(V)) -> mark(isNePal(V))
       , active(isPal(nil())) -> mark(tt())
       , active(isQid(a())) -> mark(tt())
       , active(isQid(e())) -> mark(tt())
       , active(isQid(i())) -> mark(tt())
       , active(isQid(o())) -> mark(tt())
       , active(isQid(u())) -> mark(tt())
       , active(__(X1, X2)) -> __(active(X1), X2)
       , active(__(X1, X2)) -> __(X1, active(X2))
       , active(and(X1, X2)) -> and(active(X1), X2)
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , isList(ok(X)) -> ok(isList(X))
       , isNeList(ok(X)) -> ok(isNeList(X))
       , isQid(ok(X)) -> ok(isQid(X))
       , isPal(ok(X)) -> ok(isPal(X))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
               , active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)
               , active(and(tt(), X)) -> mark(X)
               , active(isList(V)) -> mark(isNeList(V))
               , active(isList(nil())) -> mark(tt())
               , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
               , active(isNeList(V)) -> mark(isQid(V))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isList(V1), isNeList(V2)))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isNeList(V1), isList(V2)))
               , active(isNePal(V)) -> mark(isQid(V))
               , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
               , active(isPal(V)) -> mark(isNePal(V))
               , active(isPal(nil())) -> mark(tt())
               , active(isQid(a())) -> mark(tt())
               , active(isQid(e())) -> mark(tt())
               , active(isQid(i())) -> mark(tt())
               , active(isQid(o())) -> mark(tt())
               , active(isQid(u())) -> mark(tt())
               , active(__(X1, X2)) -> __(active(X1), X2)
               , active(__(X1, X2)) -> __(X1, active(X2))
               , active(and(X1, X2)) -> and(active(X1), X2)
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , isList(ok(X)) -> ok(isList(X))
               , isNeList(ok(X)) -> ok(isNeList(X))
               , isQid(ok(X)) -> ok(isQid(X))
               , isPal(ok(X)) -> ok(isPal(X))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(isQid(e())) -> mark(tt())
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [15]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [1] x1 + [3]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isNeList(V)) -> mark(isQid(V))}
            and weakly orienting the rules
            {  active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isNeList(V)) -> mark(isQid(V))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [4]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [1] x1 + [7]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))}
            and weakly orienting the rules
            {  active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [5]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [1] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isQid(o())) -> mark(tt())}
            and weakly orienting the rules
            {  active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isQid(o())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [12]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [1] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isQid(u())) -> mark(tt())}
            and weakly orienting the rules
            {  active(isQid(o())) -> mark(tt())
             , active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isQid(u())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [2]
                  u() = [4]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [1] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isQid(i())) -> mark(tt())}
            and weakly orienting the rules
            {  active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isQid(i())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [12]
                  i() = [8]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [1] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isQid(a())) -> mark(tt())}
            and weakly orienting the rules
            {  active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isQid(a())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [8]
                  e() = [0]
                  i() = [0]
                  o() = [8]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [1] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(isNePal(V)) -> mark(isQid(V))
             , active(isNePal(__(I, __(P, I)))) ->
               mark(and(isQid(I), isPal(P)))}
            and weakly orienting the rules
            {  active(isQid(a())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(isNePal(V)) -> mark(isQid(V))
               , active(isNePal(__(I, __(P, I)))) ->
                 mark(and(isQid(I), isPal(P)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [1]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [4]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [1] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isList(nil())) -> mark(tt())}
            and weakly orienting the rules
            {  active(isNePal(V)) -> mark(isQid(V))
             , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isList(nil())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [4]
                  isNeList(x1) = [1] x1 + [4]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [10]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [1] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isPal(nil())) -> mark(tt())}
            and weakly orienting the rules
            {  active(isList(nil())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isPal(nil())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [8]
                  isPal(x1) = [1] x1 + [1]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [1] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(and(tt(), X)) -> mark(X)}
            and weakly orienting the rules
            {  active(isPal(nil())) -> mark(tt())
             , active(isList(nil())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(and(tt(), X)) -> mark(X)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [8]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [8]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [12]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [1] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isList(V)) -> mark(isNeList(V))}
            and weakly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , active(isPal(nil())) -> mark(tt())
             , active(isList(nil())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isList(V)) -> mark(isNeList(V))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [8]
                  tt() = [0]
                  isList(x1) = [1] x1 + [8]
                  isNeList(x1) = [1] x1 + [1]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [8]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [15]
                  i() = [0]
                  o() = [8]
                  u() = [2]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [1] x1 + [1]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)}
            and weakly orienting the rules
            {  active(isList(V)) -> mark(isNeList(V))
             , active(and(tt(), X)) -> mark(X)
             , active(isPal(nil())) -> mark(tt())
             , active(isList(nil())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [6]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [8]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [8]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [8]
                  i() = [2]
                  o() = [9]
                  u() = [8]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [1] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
             , active(isNeList(__(V1, V2))) ->
               mark(and(isList(V1), isNeList(V2)))
             , active(isNeList(__(V1, V2))) ->
               mark(and(isNeList(V1), isList(V2)))
             , active(isPal(V)) -> mark(isNePal(V))}
            and weakly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)
             , active(isList(V)) -> mark(isNeList(V))
             , active(and(tt(), X)) -> mark(X)
             , active(isPal(nil())) -> mark(tt())
             , active(isList(nil())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isList(V1), isNeList(V2)))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isNeList(V1), isList(V2)))
               , active(isPal(V)) -> mark(isNePal(V))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [2]
                  mark(x1) = [1] x1 + [0]
                  nil() = [14]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [4]
                  isPal(x1) = [1] x1 + [8]
                  a() = [0]
                  e() = [1]
                  i() = [2]
                  o() = [0]
                  u() = [1]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [1] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))}
            and weakly orienting the rules
            {  active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
             , active(isNeList(__(V1, V2))) ->
               mark(and(isList(V1), isNeList(V2)))
             , active(isNeList(__(V1, V2))) ->
               mark(and(isNeList(V1), isList(V2)))
             , active(isPal(V)) -> mark(isNePal(V))
             , active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)
             , active(isList(V)) -> mark(isNeList(V))
             , active(and(tt(), X)) -> mark(X)
             , active(isPal(nil())) -> mark(tt())
             , active(isList(nil())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isQid(e())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [11]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [15]
                  and(x1, x2) = [1] x1 + [1] x2 + [4]
                  tt() = [2]
                  isList(x1) = [1] x1 + [5]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [1]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [13]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [1] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(__(X1, X2)) -> __(active(X1), X2)
                 , active(__(X1, X2)) -> __(X1, active(X2))
                 , active(and(X1, X2)) -> and(active(X1), X2)
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , isList(ok(X)) -> ok(isList(X))
                 , isNeList(ok(X)) -> ok(isNeList(X))
                 , isQid(ok(X)) -> ok(isQid(X))
                 , isPal(ok(X)) -> ok(isPal(X))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                 , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
                 , active(isNeList(__(V1, V2))) ->
                   mark(and(isList(V1), isNeList(V2)))
                 , active(isNeList(__(V1, V2))) ->
                   mark(and(isNeList(V1), isList(V2)))
                 , active(isPal(V)) -> mark(isNePal(V))
                 , active(__(X, nil())) -> mark(X)
                 , active(__(nil(), X)) -> mark(X)
                 , active(isList(V)) -> mark(isNeList(V))
                 , active(and(tt(), X)) -> mark(X)
                 , active(isPal(nil())) -> mark(tt())
                 , active(isList(nil())) -> mark(tt())
                 , active(isNePal(V)) -> mark(isQid(V))
                 , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
                 , active(isQid(a())) -> mark(tt())
                 , active(isQid(i())) -> mark(tt())
                 , active(isQid(u())) -> mark(tt())
                 , active(isQid(o())) -> mark(tt())
                 , active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))
                 , active(isNeList(V)) -> mark(isQid(V))
                 , active(isQid(e())) -> mark(tt())
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(__(X1, X2)) -> __(active(X1), X2)
                   , active(__(X1, X2)) -> __(X1, active(X2))
                   , active(and(X1, X2)) -> and(active(X1), X2)
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , isList(ok(X)) -> ok(isList(X))
                   , isNeList(ok(X)) -> ok(isNeList(X))
                   , isQid(ok(X)) -> ok(isQid(X))
                   , isPal(ok(X)) -> ok(isPal(X))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                   , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
                   , active(isNeList(__(V1, V2))) ->
                     mark(and(isList(V1), isNeList(V2)))
                   , active(isNeList(__(V1, V2))) ->
                     mark(and(isNeList(V1), isList(V2)))
                   , active(isPal(V)) -> mark(isNePal(V))
                   , active(__(X, nil())) -> mark(X)
                   , active(__(nil(), X)) -> mark(X)
                   , active(isList(V)) -> mark(isNeList(V))
                   , active(and(tt(), X)) -> mark(X)
                   , active(isPal(nil())) -> mark(tt())
                   , active(isList(nil())) -> mark(tt())
                   , active(isNePal(V)) -> mark(isQid(V))
                   , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
                   , active(isQid(a())) -> mark(tt())
                   , active(isQid(i())) -> mark(tt())
                   , active(isQid(u())) -> mark(tt())
                   , active(isQid(o())) -> mark(tt())
                   , active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))
                   , active(isNeList(V)) -> mark(isQid(V))
                   , active(isQid(e())) -> mark(tt())
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(4) -> 3
                 , mark_0(6) -> 3
                 , mark_0(12) -> 3
                 , mark_0(13) -> 3
                 , mark_0(14) -> 3
                 , mark_0(15) -> 3
                 , mark_0(16) -> 3
                 , mark_0(18) -> 3
                 , nil_0() -> 4
                 , tt_0() -> 6
                 , a_0() -> 12
                 , e_0() -> 13
                 , i_0() -> 14
                 , o_0() -> 15
                 , u_0() -> 16
                 , ok_0(3) -> 18
                 , ok_0(4) -> 18
                 , ok_0(6) -> 18
                 , ok_0(12) -> 18
                 , ok_0(13) -> 18
                 , ok_0(14) -> 18
                 , ok_0(15) -> 18
                 , ok_0(16) -> 18
                 , ok_0(18) -> 18
                 , active^#_0(3) -> 20
                 , active^#_0(4) -> 20
                 , active^#_0(6) -> 20
                 , active^#_0(12) -> 20
                 , active^#_0(13) -> 20
                 , active^#_0(14) -> 20
                 , active^#_0(15) -> 20
                 , active^#_0(16) -> 20
                 , active^#_0(18) -> 20
                 , __^#_0(3, 3) -> 22
                 , __^#_0(3, 4) -> 22
                 , __^#_0(3, 6) -> 22
                 , __^#_0(3, 12) -> 22
                 , __^#_0(3, 13) -> 22
                 , __^#_0(3, 14) -> 22
                 , __^#_0(3, 15) -> 22
                 , __^#_0(3, 16) -> 22
                 , __^#_0(3, 18) -> 22
                 , __^#_0(4, 3) -> 22
                 , __^#_0(4, 4) -> 22
                 , __^#_0(4, 6) -> 22
                 , __^#_0(4, 12) -> 22
                 , __^#_0(4, 13) -> 22
                 , __^#_0(4, 14) -> 22
                 , __^#_0(4, 15) -> 22
                 , __^#_0(4, 16) -> 22
                 , __^#_0(4, 18) -> 22
                 , __^#_0(6, 3) -> 22
                 , __^#_0(6, 4) -> 22
                 , __^#_0(6, 6) -> 22
                 , __^#_0(6, 12) -> 22
                 , __^#_0(6, 13) -> 22
                 , __^#_0(6, 14) -> 22
                 , __^#_0(6, 15) -> 22
                 , __^#_0(6, 16) -> 22
                 , __^#_0(6, 18) -> 22
                 , __^#_0(12, 3) -> 22
                 , __^#_0(12, 4) -> 22
                 , __^#_0(12, 6) -> 22
                 , __^#_0(12, 12) -> 22
                 , __^#_0(12, 13) -> 22
                 , __^#_0(12, 14) -> 22
                 , __^#_0(12, 15) -> 22
                 , __^#_0(12, 16) -> 22
                 , __^#_0(12, 18) -> 22
                 , __^#_0(13, 3) -> 22
                 , __^#_0(13, 4) -> 22
                 , __^#_0(13, 6) -> 22
                 , __^#_0(13, 12) -> 22
                 , __^#_0(13, 13) -> 22
                 , __^#_0(13, 14) -> 22
                 , __^#_0(13, 15) -> 22
                 , __^#_0(13, 16) -> 22
                 , __^#_0(13, 18) -> 22
                 , __^#_0(14, 3) -> 22
                 , __^#_0(14, 4) -> 22
                 , __^#_0(14, 6) -> 22
                 , __^#_0(14, 12) -> 22
                 , __^#_0(14, 13) -> 22
                 , __^#_0(14, 14) -> 22
                 , __^#_0(14, 15) -> 22
                 , __^#_0(14, 16) -> 22
                 , __^#_0(14, 18) -> 22
                 , __^#_0(15, 3) -> 22
                 , __^#_0(15, 4) -> 22
                 , __^#_0(15, 6) -> 22
                 , __^#_0(15, 12) -> 22
                 , __^#_0(15, 13) -> 22
                 , __^#_0(15, 14) -> 22
                 , __^#_0(15, 15) -> 22
                 , __^#_0(15, 16) -> 22
                 , __^#_0(15, 18) -> 22
                 , __^#_0(16, 3) -> 22
                 , __^#_0(16, 4) -> 22
                 , __^#_0(16, 6) -> 22
                 , __^#_0(16, 12) -> 22
                 , __^#_0(16, 13) -> 22
                 , __^#_0(16, 14) -> 22
                 , __^#_0(16, 15) -> 22
                 , __^#_0(16, 16) -> 22
                 , __^#_0(16, 18) -> 22
                 , __^#_0(18, 3) -> 22
                 , __^#_0(18, 4) -> 22
                 , __^#_0(18, 6) -> 22
                 , __^#_0(18, 12) -> 22
                 , __^#_0(18, 13) -> 22
                 , __^#_0(18, 14) -> 22
                 , __^#_0(18, 15) -> 22
                 , __^#_0(18, 16) -> 22
                 , __^#_0(18, 18) -> 22}
      
   5) {  active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))
       , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
       , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
      
      The usable rules for this path are the following:
      {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
       , active(__(X, nil())) -> mark(X)
       , active(__(nil(), X)) -> mark(X)
       , active(and(tt(), X)) -> mark(X)
       , active(isList(V)) -> mark(isNeList(V))
       , active(isList(nil())) -> mark(tt())
       , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
       , active(isNeList(V)) -> mark(isQid(V))
       , active(isNeList(__(V1, V2))) ->
         mark(and(isList(V1), isNeList(V2)))
       , active(isNeList(__(V1, V2))) ->
         mark(and(isNeList(V1), isList(V2)))
       , active(isNePal(V)) -> mark(isQid(V))
       , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
       , active(isPal(V)) -> mark(isNePal(V))
       , active(isPal(nil())) -> mark(tt())
       , active(isQid(a())) -> mark(tt())
       , active(isQid(e())) -> mark(tt())
       , active(isQid(i())) -> mark(tt())
       , active(isQid(o())) -> mark(tt())
       , active(isQid(u())) -> mark(tt())
       , active(__(X1, X2)) -> __(active(X1), X2)
       , active(__(X1, X2)) -> __(X1, active(X2))
       , active(and(X1, X2)) -> and(active(X1), X2)
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , isList(ok(X)) -> ok(isList(X))
       , isNeList(ok(X)) -> ok(isNeList(X))
       , isQid(ok(X)) -> ok(isQid(X))
       , isPal(ok(X)) -> ok(isPal(X))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
               , active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)
               , active(and(tt(), X)) -> mark(X)
               , active(isList(V)) -> mark(isNeList(V))
               , active(isList(nil())) -> mark(tt())
               , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
               , active(isNeList(V)) -> mark(isQid(V))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isList(V1), isNeList(V2)))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isNeList(V1), isList(V2)))
               , active(isNePal(V)) -> mark(isQid(V))
               , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
               , active(isPal(V)) -> mark(isNePal(V))
               , active(isPal(nil())) -> mark(tt())
               , active(isQid(a())) -> mark(tt())
               , active(isQid(e())) -> mark(tt())
               , active(isQid(i())) -> mark(tt())
               , active(isQid(o())) -> mark(tt())
               , active(isQid(u())) -> mark(tt())
               , active(__(X1, X2)) -> __(active(X1), X2)
               , active(__(X1, X2)) -> __(X1, active(X2))
               , active(and(X1, X2)) -> and(active(X1), X2)
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , isList(ok(X)) -> ok(isList(X))
               , isNeList(ok(X)) -> ok(isNeList(X))
               , isQid(ok(X)) -> ok(isQid(X))
               , isPal(ok(X)) -> ok(isPal(X))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))
               , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
               , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(isPal(V)) -> mark(isNePal(V))
               , active(isPal(nil())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [2]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [1] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [1] x1 + [1]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [1] x1 + [1]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
            and weakly orienting the rules
            {  active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [5]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [1] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [1] x1 + [1]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [1] x1 + [1]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(isNePal(V)) -> mark(isQid(V))
             , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
             , active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(isNePal(V)) -> mark(isQid(V))
               , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [2]
                  isPal(x1) = [1] x1 + [8]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [1] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [1] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(isQid(a())) -> mark(tt())
             , active(isQid(e())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())}
            and weakly orienting the rules
            {  active(isNePal(V)) -> mark(isQid(V))
             , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
             , active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(isQid(a())) -> mark(tt())
               , active(isQid(e())) -> mark(tt())
               , active(isQid(i())) -> mark(tt())
               , active(isQid(o())) -> mark(tt())
               , active(isQid(u())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [2]
                  isNePal(x1) = [1] x1 + [8]
                  isPal(x1) = [1] x1 + [15]
                  a() = [0]
                  e() = [0]
                  i() = [8]
                  o() = [2]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [1] x1 + [1]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [1] x1 + [5]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))}
            and weakly orienting the rules
            {  active(isQid(a())) -> mark(tt())
             , active(isQid(e())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
             , active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [4]
                  isPal(x1) = [1] x1 + [8]
                  a() = [0]
                  e() = [0]
                  i() = [8]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [1] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [1] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(isList(V)) -> mark(isNeList(V))
             , active(isList(nil())) -> mark(tt())}
            and weakly orienting the rules
            {  active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(e())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
             , active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(isList(V)) -> mark(isNeList(V))
               , active(isList(nil())) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [4]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [8]
                  e() = [12]
                  i() = [0]
                  o() = [0]
                  u() = [10]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [1] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [1] x1 + [1]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [1] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isNeList(V)) -> mark(isQid(V))}
            and weakly orienting the rules
            {  active(isList(V)) -> mark(isNeList(V))
             , active(isList(nil())) -> mark(tt())
             , active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(e())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
             , active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isNeList(V)) -> mark(isQid(V))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [4]
                  isNeList(x1) = [1] x1 + [1]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [2]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [1] x1 + [3]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [1] x1 + [1]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [1] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(and(tt(), X)) -> mark(X)}
            and weakly orienting the rules
            {  active(isNeList(V)) -> mark(isQid(V))
             , active(isList(V)) -> mark(isNeList(V))
             , active(isList(nil())) -> mark(tt())
             , active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(e())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
             , active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(and(tt(), X)) -> mark(X)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [4]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [1]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [1] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [1] x1 + [1]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [1] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)
             , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
             , active(isNeList(__(V1, V2))) ->
               mark(and(isList(V1), isNeList(V2)))
             , active(isNeList(__(V1, V2))) ->
               mark(and(isNeList(V1), isList(V2)))
             , active(isNePal(__(I, __(P, I)))) ->
               mark(and(isQid(I), isPal(P)))}
            and weakly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isList(V)) -> mark(isNeList(V))
             , active(isList(nil())) -> mark(tt())
             , active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(e())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
             , active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)
               , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isList(V1), isNeList(V2)))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isNeList(V1), isList(V2)))
               , active(isNePal(__(I, __(P, I)))) ->
                 mark(and(isQid(I), isPal(P)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [14]
                  mark(x1) = [1] x1 + [0]
                  nil() = [2]
                  and(x1, x2) = [1] x1 + [1] x2 + [4]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [1]
                  i() = [0]
                  o() = [0]
                  u() = [8]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [13]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [1] x1 + [1]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [1] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))}
            and weakly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)
             , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
             , active(isNeList(__(V1, V2))) ->
               mark(and(isList(V1), isNeList(V2)))
             , active(isNeList(__(V1, V2))) ->
               mark(and(isNeList(V1), isList(V2)))
             , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
             , active(and(tt(), X)) -> mark(X)
             , active(isNeList(V)) -> mark(isQid(V))
             , active(isList(V)) -> mark(isNeList(V))
             , active(isList(nil())) -> mark(tt())
             , active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))
             , active(isQid(a())) -> mark(tt())
             , active(isQid(e())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , active(isNePal(V)) -> mark(isQid(V))
             , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
             , active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [6]
                  __(x1, x2) = [1] x1 + [1] x2 + [4]
                  mark(x1) = [1] x1 + [2]
                  nil() = [2]
                  and(x1, x2) = [1] x1 + [1] x2 + [6]
                  tt() = [2]
                  isList(x1) = [1] x1 + [1]
                  isNeList(x1) = [1] x1 + [5]
                  isQid(x1) = [1] x1 + [5]
                  isNePal(x1) = [1] x1 + [1]
                  isPal(x1) = [1] x1 + [0]
                  a() = [6]
                  e() = [4]
                  i() = [8]
                  o() = [1]
                  u() = [12]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [1] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [1] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(__(X1, X2)) -> __(active(X1), X2)
                 , active(__(X1, X2)) -> __(X1, active(X2))
                 , active(and(X1, X2)) -> and(active(X1), X2)
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , isList(ok(X)) -> ok(isList(X))
                 , isNeList(ok(X)) -> ok(isNeList(X))
                 , isQid(ok(X)) -> ok(isQid(X))
                 , isPal(ok(X)) -> ok(isPal(X))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                 , active(__(X, nil())) -> mark(X)
                 , active(__(nil(), X)) -> mark(X)
                 , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
                 , active(isNeList(__(V1, V2))) ->
                   mark(and(isList(V1), isNeList(V2)))
                 , active(isNeList(__(V1, V2))) ->
                   mark(and(isNeList(V1), isList(V2)))
                 , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
                 , active(and(tt(), X)) -> mark(X)
                 , active(isNeList(V)) -> mark(isQid(V))
                 , active(isList(V)) -> mark(isNeList(V))
                 , active(isList(nil())) -> mark(tt())
                 , active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))
                 , active(isQid(a())) -> mark(tt())
                 , active(isQid(e())) -> mark(tt())
                 , active(isQid(i())) -> mark(tt())
                 , active(isQid(o())) -> mark(tt())
                 , active(isQid(u())) -> mark(tt())
                 , active(isNePal(V)) -> mark(isQid(V))
                 , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
                 , active(isPal(V)) -> mark(isNePal(V))
                 , active(isPal(nil())) -> mark(tt())}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(__(X1, X2)) -> __(active(X1), X2)
                   , active(__(X1, X2)) -> __(X1, active(X2))
                   , active(and(X1, X2)) -> and(active(X1), X2)
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , isList(ok(X)) -> ok(isList(X))
                   , isNeList(ok(X)) -> ok(isNeList(X))
                   , isQid(ok(X)) -> ok(isQid(X))
                   , isPal(ok(X)) -> ok(isPal(X))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                   , active(__(X, nil())) -> mark(X)
                   , active(__(nil(), X)) -> mark(X)
                   , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
                   , active(isNeList(__(V1, V2))) ->
                     mark(and(isList(V1), isNeList(V2)))
                   , active(isNeList(__(V1, V2))) ->
                     mark(and(isNeList(V1), isList(V2)))
                   , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
                   , active(and(tt(), X)) -> mark(X)
                   , active(isNeList(V)) -> mark(isQid(V))
                   , active(isList(V)) -> mark(isNeList(V))
                   , active(isList(nil())) -> mark(tt())
                   , active^#(and(X1, X2)) -> c_21(and^#(active(X1), X2))
                   , active(isQid(a())) -> mark(tt())
                   , active(isQid(e())) -> mark(tt())
                   , active(isQid(i())) -> mark(tt())
                   , active(isQid(o())) -> mark(tt())
                   , active(isQid(u())) -> mark(tt())
                   , active(isNePal(V)) -> mark(isQid(V))
                   , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
                   , active(isPal(V)) -> mark(isNePal(V))
                   , active(isPal(nil())) -> mark(tt())}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(2) -> 2
                 , nil_0() -> 2
                 , tt_0() -> 2
                 , a_0() -> 2
                 , e_0() -> 2
                 , i_0() -> 2
                 , o_0() -> 2
                 , u_0() -> 2
                 , ok_0(2) -> 2
                 , active^#_0(2) -> 1
                 , and^#_0(2, 2) -> 1
                 , c_24_0(1) -> 1
                 , c_40_0(1) -> 1}
      
   6) {  active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))
       , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))
       , __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
       , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))}
      
      The usable rules for this path are the following:
      {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
       , active(__(X, nil())) -> mark(X)
       , active(__(nil(), X)) -> mark(X)
       , active(and(tt(), X)) -> mark(X)
       , active(isList(V)) -> mark(isNeList(V))
       , active(isList(nil())) -> mark(tt())
       , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
       , active(isNeList(V)) -> mark(isQid(V))
       , active(isNeList(__(V1, V2))) ->
         mark(and(isList(V1), isNeList(V2)))
       , active(isNeList(__(V1, V2))) ->
         mark(and(isNeList(V1), isList(V2)))
       , active(isNePal(V)) -> mark(isQid(V))
       , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
       , active(isPal(V)) -> mark(isNePal(V))
       , active(isPal(nil())) -> mark(tt())
       , active(isQid(a())) -> mark(tt())
       , active(isQid(e())) -> mark(tt())
       , active(isQid(i())) -> mark(tt())
       , active(isQid(o())) -> mark(tt())
       , active(isQid(u())) -> mark(tt())
       , active(__(X1, X2)) -> __(active(X1), X2)
       , active(__(X1, X2)) -> __(X1, active(X2))
       , active(and(X1, X2)) -> and(active(X1), X2)
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , isList(ok(X)) -> ok(isList(X))
       , isNeList(ok(X)) -> ok(isNeList(X))
       , isQid(ok(X)) -> ok(isQid(X))
       , isPal(ok(X)) -> ok(isPal(X))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
               , active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)
               , active(and(tt(), X)) -> mark(X)
               , active(isList(V)) -> mark(isNeList(V))
               , active(isList(nil())) -> mark(tt())
               , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
               , active(isNeList(V)) -> mark(isQid(V))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isList(V1), isNeList(V2)))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isNeList(V1), isList(V2)))
               , active(isNePal(V)) -> mark(isQid(V))
               , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
               , active(isPal(V)) -> mark(isNePal(V))
               , active(isPal(nil())) -> mark(tt())
               , active(isQid(a())) -> mark(tt())
               , active(isQid(e())) -> mark(tt())
               , active(isQid(i())) -> mark(tt())
               , active(isQid(o())) -> mark(tt())
               , active(isQid(u())) -> mark(tt())
               , active(__(X1, X2)) -> __(active(X1), X2)
               , active(__(X1, X2)) -> __(X1, active(X2))
               , active(and(X1, X2)) -> and(active(X1), X2)
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , isList(ok(X)) -> ok(isList(X))
               , isNeList(ok(X)) -> ok(isNeList(X))
               , isQid(ok(X)) -> ok(isQid(X))
               , isPal(ok(X)) -> ok(isPal(X))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))
               , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))
               , __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
               , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , active(isList(V)) -> mark(isNeList(V))
             , active(isList(nil())) -> mark(tt())
             , active(isNeList(V)) -> mark(isQid(V))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(and(tt(), X)) -> mark(X)
               , active(isList(V)) -> mark(isNeList(V))
               , active(isList(nil())) -> mark(tt())
               , active(isNeList(V)) -> mark(isQid(V))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [4]
                  tt() = [0]
                  isList(x1) = [1] x1 + [15]
                  isNeList(x1) = [1] x1 + [4]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [1] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [1] x1 + [1]
                  c_23(x1) = [1] x1 + [5]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [1] x1 + [1]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))}
            and weakly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , active(isList(V)) -> mark(isNeList(V))
             , active(isList(nil())) -> mark(tt())
             , active(isNeList(V)) -> mark(isQid(V))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
               , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [7]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [1] x1 + [1]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [1] x1 + [0]
                  c_23(x1) = [1] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [1] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())
             , active(isQid(a())) -> mark(tt())
             , active(isQid(e())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))}
            and weakly orienting the rules
            {  __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))
             , active(and(tt(), X)) -> mark(X)
             , active(isList(V)) -> mark(isNeList(V))
             , active(isList(nil())) -> mark(tt())
             , active(isNeList(V)) -> mark(isQid(V))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(isPal(V)) -> mark(isNePal(V))
               , active(isPal(nil())) -> mark(tt())
               , active(isQid(a())) -> mark(tt())
               , active(isQid(e())) -> mark(tt())
               , active(isQid(i())) -> mark(tt())
               , active(isQid(o())) -> mark(tt())
               , active(isQid(u())) -> mark(tt())
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [8]
                  isNeList(x1) = [1] x1 + [2]
                  isQid(x1) = [1] x1 + [2]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [4]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [6]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [1] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [1] x1 + [1]
                  c_23(x1) = [1] x1 + [1]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [1] x1 + [1]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isNePal(V)) -> mark(isQid(V))}
            and weakly orienting the rules
            {  active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())
             , active(isQid(a())) -> mark(tt())
             , active(isQid(e())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))
             , __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))
             , active(and(tt(), X)) -> mark(X)
             , active(isList(V)) -> mark(isNeList(V))
             , active(isList(nil())) -> mark(tt())
             , active(isNeList(V)) -> mark(isQid(V))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isNePal(V)) -> mark(isQid(V))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [2]
                  isPal(x1) = [1] x1 + [2]
                  a() = [0]
                  e() = [2]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [1] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [1] x1 + [1]
                  c_23(x1) = [1] x1 + [1]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [1] x1 + [1]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))}
            and weakly orienting the rules
            {  active(isNePal(V)) -> mark(isQid(V))
             , active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())
             , active(isQid(a())) -> mark(tt())
             , active(isQid(e())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))
             , __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))
             , active(and(tt(), X)) -> mark(X)
             , active(isList(V)) -> mark(isNeList(V))
             , active(isList(nil())) -> mark(tt())
             , active(isNeList(V)) -> mark(isQid(V))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [2]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [1] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [1] x1 + [1]
                  c_23(x1) = [1] x1 + [1]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [1] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
             , active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)}
            and weakly orienting the rules
            {  active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))
             , active(isNePal(V)) -> mark(isQid(V))
             , active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())
             , active(isQid(a())) -> mark(tt())
             , active(isQid(e())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))
             , __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))
             , active(and(tt(), X)) -> mark(X)
             , active(isList(V)) -> mark(isNeList(V))
             , active(isList(nil())) -> mark(tt())
             , active(isNeList(V)) -> mark(isQid(V))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
               , active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [2]
                  __(x1, x2) = [1] x1 + [1] x2 + [1]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [6]
                  isList(x1) = [1] x1 + [8]
                  isNeList(x1) = [1] x1 + [3]
                  isQid(x1) = [1] x1 + [4]
                  isNePal(x1) = [1] x1 + [2]
                  isPal(x1) = [1] x1 + [12]
                  a() = [13]
                  e() = [10]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [1] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [1] x1 + [0]
                  c_23(x1) = [1] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [1] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
             , active(isNeList(__(V1, V2))) ->
               mark(and(isList(V1), isNeList(V2)))
             , active(isNeList(__(V1, V2))) ->
               mark(and(isNeList(V1), isList(V2)))
             , active(isNePal(__(I, __(P, I)))) ->
               mark(and(isQid(I), isPal(P)))}
            and weakly orienting the rules
            {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
             , active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)
             , active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))
             , active(isNePal(V)) -> mark(isQid(V))
             , active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())
             , active(isQid(a())) -> mark(tt())
             , active(isQid(e())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))
             , __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))
             , active(and(tt(), X)) -> mark(X)
             , active(isList(V)) -> mark(isNeList(V))
             , active(isList(nil())) -> mark(tt())
             , active(isNeList(V)) -> mark(isQid(V))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isList(V1), isNeList(V2)))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isNeList(V1), isList(V2)))
               , active(isNePal(__(I, __(P, I)))) ->
                 mark(and(isQid(I), isPal(P)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [8]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [5]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [3]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [1] x1 + [1]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [1] x1 + [0]
                  c_23(x1) = [1] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [1] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(__(X1, X2)) -> __(active(X1), X2)
                 , active(__(X1, X2)) -> __(X1, active(X2))
                 , active(and(X1, X2)) -> and(active(X1), X2)
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , isList(ok(X)) -> ok(isList(X))
                 , isNeList(ok(X)) -> ok(isNeList(X))
                 , isQid(ok(X)) -> ok(isQid(X))
                 , isPal(ok(X)) -> ok(isPal(X))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
                 , active(isNeList(__(V1, V2))) ->
                   mark(and(isList(V1), isNeList(V2)))
                 , active(isNeList(__(V1, V2))) ->
                   mark(and(isNeList(V1), isList(V2)))
                 , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
                 , active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                 , active(__(X, nil())) -> mark(X)
                 , active(__(nil(), X)) -> mark(X)
                 , active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))
                 , active(isNePal(V)) -> mark(isQid(V))
                 , active(isPal(V)) -> mark(isNePal(V))
                 , active(isPal(nil())) -> mark(tt())
                 , active(isQid(a())) -> mark(tt())
                 , active(isQid(e())) -> mark(tt())
                 , active(isQid(i())) -> mark(tt())
                 , active(isQid(o())) -> mark(tt())
                 , active(isQid(u())) -> mark(tt())
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))
                 , __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
                 , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))
                 , active(and(tt(), X)) -> mark(X)
                 , active(isList(V)) -> mark(isNeList(V))
                 , active(isList(nil())) -> mark(tt())
                 , active(isNeList(V)) -> mark(isQid(V))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(__(X1, X2)) -> __(active(X1), X2)
                   , active(__(X1, X2)) -> __(X1, active(X2))
                   , active(and(X1, X2)) -> and(active(X1), X2)
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , isList(ok(X)) -> ok(isList(X))
                   , isNeList(ok(X)) -> ok(isNeList(X))
                   , isQid(ok(X)) -> ok(isQid(X))
                   , isPal(ok(X)) -> ok(isPal(X))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
                   , active(isNeList(__(V1, V2))) ->
                     mark(and(isList(V1), isNeList(V2)))
                   , active(isNeList(__(V1, V2))) ->
                     mark(and(isNeList(V1), isList(V2)))
                   , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
                   , active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                   , active(__(X, nil())) -> mark(X)
                   , active(__(nil(), X)) -> mark(X)
                   , active^#(__(X1, X2)) -> c_19(__^#(active(X1), X2))
                   , active(isNePal(V)) -> mark(isQid(V))
                   , active(isPal(V)) -> mark(isNePal(V))
                   , active(isPal(nil())) -> mark(tt())
                   , active(isQid(a())) -> mark(tt())
                   , active(isQid(e())) -> mark(tt())
                   , active(isQid(i())) -> mark(tt())
                   , active(isQid(o())) -> mark(tt())
                   , active(isQid(u())) -> mark(tt())
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))
                   , __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
                   , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))
                   , active(and(tt(), X)) -> mark(X)
                   , active(isList(V)) -> mark(isNeList(V))
                   , active(isList(nil())) -> mark(tt())
                   , active(isNeList(V)) -> mark(isQid(V))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(2) -> 2
                 , nil_0() -> 2
                 , tt_0() -> 2
                 , a_0() -> 2
                 , e_0() -> 2
                 , i_0() -> 2
                 , o_0() -> 2
                 , u_0() -> 2
                 , ok_0(2) -> 2
                 , active^#_0(2) -> 1
                 , __^#_0(2, 2) -> 1
                 , c_22_0(1) -> 1
                 , c_23_0(1) -> 1
                 , c_39_0(1) -> 1}
      
   7) {  active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))
       , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))
       , __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
       , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))}
      
      The usable rules for this path are the following:
      {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
       , active(__(X, nil())) -> mark(X)
       , active(__(nil(), X)) -> mark(X)
       , active(and(tt(), X)) -> mark(X)
       , active(isList(V)) -> mark(isNeList(V))
       , active(isList(nil())) -> mark(tt())
       , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
       , active(isNeList(V)) -> mark(isQid(V))
       , active(isNeList(__(V1, V2))) ->
         mark(and(isList(V1), isNeList(V2)))
       , active(isNeList(__(V1, V2))) ->
         mark(and(isNeList(V1), isList(V2)))
       , active(isNePal(V)) -> mark(isQid(V))
       , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
       , active(isPal(V)) -> mark(isNePal(V))
       , active(isPal(nil())) -> mark(tt())
       , active(isQid(a())) -> mark(tt())
       , active(isQid(e())) -> mark(tt())
       , active(isQid(i())) -> mark(tt())
       , active(isQid(o())) -> mark(tt())
       , active(isQid(u())) -> mark(tt())
       , active(__(X1, X2)) -> __(active(X1), X2)
       , active(__(X1, X2)) -> __(X1, active(X2))
       , active(and(X1, X2)) -> and(active(X1), X2)
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , isList(ok(X)) -> ok(isList(X))
       , isNeList(ok(X)) -> ok(isNeList(X))
       , isQid(ok(X)) -> ok(isQid(X))
       , isPal(ok(X)) -> ok(isPal(X))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
               , active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)
               , active(and(tt(), X)) -> mark(X)
               , active(isList(V)) -> mark(isNeList(V))
               , active(isList(nil())) -> mark(tt())
               , active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
               , active(isNeList(V)) -> mark(isQid(V))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isList(V1), isNeList(V2)))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isNeList(V1), isList(V2)))
               , active(isNePal(V)) -> mark(isQid(V))
               , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
               , active(isPal(V)) -> mark(isNePal(V))
               , active(isPal(nil())) -> mark(tt())
               , active(isQid(a())) -> mark(tt())
               , active(isQid(e())) -> mark(tt())
               , active(isQid(i())) -> mark(tt())
               , active(isQid(o())) -> mark(tt())
               , active(isQid(u())) -> mark(tt())
               , active(__(X1, X2)) -> __(active(X1), X2)
               , active(__(X1, X2)) -> __(X1, active(X2))
               , active(and(X1, X2)) -> and(active(X1), X2)
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , isList(ok(X)) -> ok(isList(X))
               , isNeList(ok(X)) -> ok(isNeList(X))
               , isQid(ok(X)) -> ok(isQid(X))
               , isPal(ok(X)) -> ok(isPal(X))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))
               , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))
               , __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
               , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , active(isList(V)) -> mark(isNeList(V))
             , active(isList(nil())) -> mark(tt())
             , active(isNeList(V)) -> mark(isQid(V))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(and(tt(), X)) -> mark(X)
               , active(isList(V)) -> mark(isNeList(V))
               , active(isList(nil())) -> mark(tt())
               , active(isNeList(V)) -> mark(isQid(V))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [4]
                  tt() = [0]
                  isList(x1) = [1] x1 + [15]
                  isNeList(x1) = [1] x1 + [4]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [1] x1 + [1]
                  c_23(x1) = [1] x1 + [5]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [1] x1 + [1]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))}
            and weakly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , active(isList(V)) -> mark(isNeList(V))
             , active(isList(nil())) -> mark(tt())
             , active(isNeList(V)) -> mark(isQid(V))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
               , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [7]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [1]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [1] x1 + [0]
                  c_23(x1) = [1] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [1] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())
             , active(isQid(a())) -> mark(tt())
             , active(isQid(e())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))}
            and weakly orienting the rules
            {  __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))
             , active(and(tt(), X)) -> mark(X)
             , active(isList(V)) -> mark(isNeList(V))
             , active(isList(nil())) -> mark(tt())
             , active(isNeList(V)) -> mark(isQid(V))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(isPal(V)) -> mark(isNePal(V))
               , active(isPal(nil())) -> mark(tt())
               , active(isQid(a())) -> mark(tt())
               , active(isQid(e())) -> mark(tt())
               , active(isQid(i())) -> mark(tt())
               , active(isQid(o())) -> mark(tt())
               , active(isQid(u())) -> mark(tt())
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [8]
                  isNeList(x1) = [1] x1 + [2]
                  isQid(x1) = [1] x1 + [2]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [4]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [6]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [1] x1 + [1]
                  c_23(x1) = [1] x1 + [1]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [1] x1 + [1]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isNePal(V)) -> mark(isQid(V))}
            and weakly orienting the rules
            {  active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())
             , active(isQid(a())) -> mark(tt())
             , active(isQid(e())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))
             , __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))
             , active(and(tt(), X)) -> mark(X)
             , active(isList(V)) -> mark(isNeList(V))
             , active(isList(nil())) -> mark(tt())
             , active(isNeList(V)) -> mark(isQid(V))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isNePal(V)) -> mark(isQid(V))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [2]
                  isPal(x1) = [1] x1 + [2]
                  a() = [0]
                  e() = [2]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [1] x1 + [1]
                  c_23(x1) = [1] x1 + [1]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [1] x1 + [1]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))}
            and weakly orienting the rules
            {  active(isNePal(V)) -> mark(isQid(V))
             , active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())
             , active(isQid(a())) -> mark(tt())
             , active(isQid(e())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))
             , __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))
             , active(and(tt(), X)) -> mark(X)
             , active(isList(V)) -> mark(isNeList(V))
             , active(isList(nil())) -> mark(tt())
             , active(isNeList(V)) -> mark(isQid(V))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [2]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [1] x1 + [1]
                  c_23(x1) = [1] x1 + [1]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [1] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
             , active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)}
            and weakly orienting the rules
            {  active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))
             , active(isNePal(V)) -> mark(isQid(V))
             , active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())
             , active(isQid(a())) -> mark(tt())
             , active(isQid(e())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))
             , __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))
             , active(and(tt(), X)) -> mark(X)
             , active(isList(V)) -> mark(isNeList(V))
             , active(isList(nil())) -> mark(tt())
             , active(isNeList(V)) -> mark(isQid(V))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
               , active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [2]
                  __(x1, x2) = [1] x1 + [1] x2 + [1]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [6]
                  isList(x1) = [1] x1 + [8]
                  isNeList(x1) = [1] x1 + [3]
                  isQid(x1) = [1] x1 + [4]
                  isNePal(x1) = [1] x1 + [2]
                  isPal(x1) = [1] x1 + [12]
                  a() = [13]
                  e() = [10]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [1] x1 + [0]
                  c_23(x1) = [1] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [1] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
             , active(isNeList(__(V1, V2))) ->
               mark(and(isList(V1), isNeList(V2)))
             , active(isNeList(__(V1, V2))) ->
               mark(and(isNeList(V1), isList(V2)))
             , active(isNePal(__(I, __(P, I)))) ->
               mark(and(isQid(I), isPal(P)))}
            and weakly orienting the rules
            {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
             , active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)
             , active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))
             , active(isNePal(V)) -> mark(isQid(V))
             , active(isPal(V)) -> mark(isNePal(V))
             , active(isPal(nil())) -> mark(tt())
             , active(isQid(a())) -> mark(tt())
             , active(isQid(e())) -> mark(tt())
             , active(isQid(i())) -> mark(tt())
             , active(isQid(o())) -> mark(tt())
             , active(isQid(u())) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))
             , __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))
             , active(and(tt(), X)) -> mark(X)
             , active(isList(V)) -> mark(isNeList(V))
             , active(isList(nil())) -> mark(tt())
             , active(isNeList(V)) -> mark(isQid(V))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isList(V1), isNeList(V2)))
               , active(isNeList(__(V1, V2))) ->
                 mark(and(isNeList(V1), isList(V2)))
               , active(isNePal(__(I, __(P, I)))) ->
                 mark(and(isQid(I), isPal(P)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [8]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [5]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [3]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [1]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [1] x1 + [0]
                  c_23(x1) = [1] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [1] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(__(X1, X2)) -> __(active(X1), X2)
                 , active(__(X1, X2)) -> __(X1, active(X2))
                 , active(and(X1, X2)) -> and(active(X1), X2)
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , isList(ok(X)) -> ok(isList(X))
                 , isNeList(ok(X)) -> ok(isNeList(X))
                 , isQid(ok(X)) -> ok(isQid(X))
                 , isPal(ok(X)) -> ok(isPal(X))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
                 , active(isNeList(__(V1, V2))) ->
                   mark(and(isList(V1), isNeList(V2)))
                 , active(isNeList(__(V1, V2))) ->
                   mark(and(isNeList(V1), isList(V2)))
                 , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
                 , active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                 , active(__(X, nil())) -> mark(X)
                 , active(__(nil(), X)) -> mark(X)
                 , active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))
                 , active(isNePal(V)) -> mark(isQid(V))
                 , active(isPal(V)) -> mark(isNePal(V))
                 , active(isPal(nil())) -> mark(tt())
                 , active(isQid(a())) -> mark(tt())
                 , active(isQid(e())) -> mark(tt())
                 , active(isQid(i())) -> mark(tt())
                 , active(isQid(o())) -> mark(tt())
                 , active(isQid(u())) -> mark(tt())
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))
                 , __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
                 , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))
                 , active(and(tt(), X)) -> mark(X)
                 , active(isList(V)) -> mark(isNeList(V))
                 , active(isList(nil())) -> mark(tt())
                 , active(isNeList(V)) -> mark(isQid(V))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(__(X1, X2)) -> __(active(X1), X2)
                   , active(__(X1, X2)) -> __(X1, active(X2))
                   , active(and(X1, X2)) -> and(active(X1), X2)
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , isList(ok(X)) -> ok(isList(X))
                   , isNeList(ok(X)) -> ok(isNeList(X))
                   , isQid(ok(X)) -> ok(isQid(X))
                   , isPal(ok(X)) -> ok(isPal(X))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2)))
                   , active(isNeList(__(V1, V2))) ->
                     mark(and(isList(V1), isNeList(V2)))
                   , active(isNeList(__(V1, V2))) ->
                     mark(and(isNeList(V1), isList(V2)))
                   , active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P)))
                   , active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                   , active(__(X, nil())) -> mark(X)
                   , active(__(nil(), X)) -> mark(X)
                   , active^#(__(X1, X2)) -> c_20(__^#(X1, active(X2)))
                   , active(isNePal(V)) -> mark(isQid(V))
                   , active(isPal(V)) -> mark(isNePal(V))
                   , active(isPal(nil())) -> mark(tt())
                   , active(isQid(a())) -> mark(tt())
                   , active(isQid(e())) -> mark(tt())
                   , active(isQid(i())) -> mark(tt())
                   , active(isQid(o())) -> mark(tt())
                   , active(isQid(u())) -> mark(tt())
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))
                   , __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
                   , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))
                   , active(and(tt(), X)) -> mark(X)
                   , active(isList(V)) -> mark(isNeList(V))
                   , active(isList(nil())) -> mark(tt())
                   , active(isNeList(V)) -> mark(isQid(V))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(2) -> 2
                 , nil_0() -> 2
                 , tt_0() -> 2
                 , a_0() -> 2
                 , e_0() -> 2
                 , i_0() -> 2
                 , o_0() -> 2
                 , u_0() -> 2
                 , ok_0(2) -> 2
                 , active^#_0(2) -> 1
                 , __^#_0(2, 2) -> 1
                 , c_22_0(1) -> 1
                 , c_23_0(1) -> 1
                 , c_39_0(1) -> 1}
      
   8) {  proper^#(__(X1, X2)) -> c_25(__^#(proper(X1), proper(X2)))
       , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))
       , __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
       , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))}
      
      The usable rules for this path are the following:
      {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
       , proper(nil()) -> ok(nil())
       , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(isList(X)) -> isList(proper(X))
       , proper(isNeList(X)) -> isNeList(proper(X))
       , proper(isQid(X)) -> isQid(proper(X))
       , proper(isNePal(X)) -> isNePal(proper(X))
       , proper(isPal(X)) -> isPal(proper(X))
       , proper(a()) -> ok(a())
       , proper(e()) -> ok(e())
       , proper(i()) -> ok(i())
       , proper(o()) -> ok(o())
       , proper(u()) -> ok(u())
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , isList(ok(X)) -> ok(isList(X))
       , isNeList(ok(X)) -> ok(isNeList(X))
       , isQid(ok(X)) -> ok(isQid(X))
       , isPal(ok(X)) -> ok(isPal(X))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
               , proper(nil()) -> ok(nil())
               , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(isList(X)) -> isList(proper(X))
               , proper(isNeList(X)) -> isNeList(proper(X))
               , proper(isQid(X)) -> isQid(proper(X))
               , proper(isNePal(X)) -> isNePal(proper(X))
               , proper(isPal(X)) -> isPal(proper(X))
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , isList(ok(X)) -> ok(isList(X))
               , isNeList(ok(X)) -> ok(isNeList(X))
               , isQid(ok(X)) -> ok(isQid(X))
               , isPal(ok(X)) -> ok(isPal(X))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , proper^#(__(X1, X2)) -> c_25(__^#(proper(X1), proper(X2)))
               , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))
               , __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
               , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [1] x1 + [1]
                  c_23(x1) = [1] x1 + [1]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_25(x1) = [1] x1 + [1]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [1] x1 + [1]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(__(X1, X2)) -> c_25(__^#(proper(X1), proper(X2)))}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(__(X1, X2)) -> c_25(__^#(proper(X1), proper(X2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [1] x1 + [0]
                  c_23(x1) = [1] x1 + [1]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_25(x1) = [1] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [1] x1 + [1]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))}
            and weakly orienting the rules
            {  proper^#(__(X1, X2)) -> c_25(__^#(proper(X1), proper(X2)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
               , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [8]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [8]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [1] x1 + [1]
                  c_23(x1) = [1] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [13]
                  c_25(x1) = [1] x1 + [1]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [1] x1 + [1]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            and weakly orienting the rules
            {  __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))
             , proper^#(__(X1, X2)) -> c_25(__^#(proper(X1), proper(X2)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(nil()) -> ok(nil())
               , proper(tt()) -> ok(tt())
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [3]
                  nil() = [7]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [2]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [6]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [5]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [1] x1 + [0]
                  c_23(x1) = [1] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [13]
                  c_25(x1) = [1] x1 + [4]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [1] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                 , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(isList(X)) -> isList(proper(X))
                 , proper(isNeList(X)) -> isNeList(proper(X))
                 , proper(isQid(X)) -> isQid(proper(X))
                 , proper(isNePal(X)) -> isNePal(proper(X))
                 , proper(isPal(X)) -> isPal(proper(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , isList(ok(X)) -> ok(isList(X))
                 , isNeList(ok(X)) -> ok(isNeList(X))
                 , isQid(ok(X)) -> ok(isQid(X))
                 , isPal(ok(X)) -> ok(isPal(X))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  proper(nil()) -> ok(nil())
                 , proper(tt()) -> ok(tt())
                 , proper(a()) -> ok(a())
                 , proper(e()) -> ok(e())
                 , proper(i()) -> ok(i())
                 , proper(o()) -> ok(o())
                 , proper(u()) -> ok(u())
                 , __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
                 , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))
                 , proper^#(__(X1, X2)) -> c_25(__^#(proper(X1), proper(X2)))
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                   , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(isList(X)) -> isList(proper(X))
                   , proper(isNeList(X)) -> isNeList(proper(X))
                   , proper(isQid(X)) -> isQid(proper(X))
                   , proper(isNePal(X)) -> isNePal(proper(X))
                   , proper(isPal(X)) -> isPal(proper(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , isList(ok(X)) -> ok(isList(X))
                   , isNeList(ok(X)) -> ok(isNeList(X))
                   , isQid(ok(X)) -> ok(isQid(X))
                   , isPal(ok(X)) -> ok(isPal(X))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  proper(nil()) -> ok(nil())
                   , proper(tt()) -> ok(tt())
                   , proper(a()) -> ok(a())
                   , proper(e()) -> ok(e())
                   , proper(i()) -> ok(i())
                   , proper(o()) -> ok(o())
                   , proper(u()) -> ok(u())
                   , __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
                   , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))
                   , proper^#(__(X1, X2)) -> c_25(__^#(proper(X1), proper(X2)))
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(2) -> 2
                 , nil_0() -> 2
                 , tt_0() -> 2
                 , a_0() -> 2
                 , e_0() -> 2
                 , i_0() -> 2
                 , o_0() -> 2
                 , u_0() -> 2
                 , ok_0(2) -> 2
                 , __^#_0(2, 2) -> 1
                 , c_22_0(1) -> 1
                 , c_23_0(1) -> 1
                 , proper^#_0(2) -> 1
                 , c_39_0(1) -> 1}
      
   9) {  proper^#(and(X1, X2)) -> c_27(and^#(proper(X1), proper(X2)))
       , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
       , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
      
      The usable rules for this path are the following:
      {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
       , proper(nil()) -> ok(nil())
       , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(isList(X)) -> isList(proper(X))
       , proper(isNeList(X)) -> isNeList(proper(X))
       , proper(isQid(X)) -> isQid(proper(X))
       , proper(isNePal(X)) -> isNePal(proper(X))
       , proper(isPal(X)) -> isPal(proper(X))
       , proper(a()) -> ok(a())
       , proper(e()) -> ok(e())
       , proper(i()) -> ok(i())
       , proper(o()) -> ok(o())
       , proper(u()) -> ok(u())
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , isList(ok(X)) -> ok(isList(X))
       , isNeList(ok(X)) -> ok(isNeList(X))
       , isQid(ok(X)) -> ok(isQid(X))
       , isPal(ok(X)) -> ok(isPal(X))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
               , proper(nil()) -> ok(nil())
               , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(isList(X)) -> isList(proper(X))
               , proper(isNeList(X)) -> isNeList(proper(X))
               , proper(isQid(X)) -> isQid(proper(X))
               , proper(isNePal(X)) -> isNePal(proper(X))
               , proper(isPal(X)) -> isPal(proper(X))
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , isList(ok(X)) -> ok(isList(X))
               , isNeList(ok(X)) -> ok(isNeList(X))
               , isQid(ok(X)) -> ok(isQid(X))
               , isPal(ok(X)) -> ok(isPal(X))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , proper^#(and(X1, X2)) -> c_27(and^#(proper(X1), proper(X2)))
               , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
               , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [8]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [1] x1 + [1]
                  proper^#(x1) = [1] x1 + [1]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [1] x1 + [15]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [1] x1 + [1]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(and(X1, X2)) -> c_27(and^#(proper(X1), proper(X2)))}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(and(X1, X2)) -> c_27(and^#(proper(X1), proper(X2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [4]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [1] x1 + [2]
                  proper^#(x1) = [1] x1 + [9]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [1] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [1] x1 + [1]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
            and weakly orienting the rules
            {  proper^#(and(X1, X2)) -> c_27(and^#(proper(X1), proper(X2)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [8]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [2]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [1] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [1] x1 + [5]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [1] x1 + [1]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            and weakly orienting the rules
            {  and^#(mark(X1), X2) -> c_24(and^#(X1, X2))
             , proper^#(and(X1, X2)) -> c_27(and^#(proper(X1), proper(X2)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(nil()) -> ok(nil())
               , proper(tt()) -> ok(tt())
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [8]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [1]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [1] x1 + [0]
                  proper^#(x1) = [1] x1 + [8]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [1] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [1] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                 , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(isList(X)) -> isList(proper(X))
                 , proper(isNeList(X)) -> isNeList(proper(X))
                 , proper(isQid(X)) -> isQid(proper(X))
                 , proper(isNePal(X)) -> isNePal(proper(X))
                 , proper(isPal(X)) -> isPal(proper(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , isList(ok(X)) -> ok(isList(X))
                 , isNeList(ok(X)) -> ok(isNeList(X))
                 , isQid(ok(X)) -> ok(isQid(X))
                 , isPal(ok(X)) -> ok(isPal(X))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  proper(nil()) -> ok(nil())
                 , proper(tt()) -> ok(tt())
                 , proper(a()) -> ok(a())
                 , proper(e()) -> ok(e())
                 , proper(i()) -> ok(i())
                 , proper(o()) -> ok(o())
                 , proper(u()) -> ok(u())
                 , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))
                 , proper^#(and(X1, X2)) -> c_27(and^#(proper(X1), proper(X2)))
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                   , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(isList(X)) -> isList(proper(X))
                   , proper(isNeList(X)) -> isNeList(proper(X))
                   , proper(isQid(X)) -> isQid(proper(X))
                   , proper(isNePal(X)) -> isNePal(proper(X))
                   , proper(isPal(X)) -> isPal(proper(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , isList(ok(X)) -> ok(isList(X))
                   , isNeList(ok(X)) -> ok(isNeList(X))
                   , isQid(ok(X)) -> ok(isQid(X))
                   , isPal(ok(X)) -> ok(isPal(X))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  proper(nil()) -> ok(nil())
                   , proper(tt()) -> ok(tt())
                   , proper(a()) -> ok(a())
                   , proper(e()) -> ok(e())
                   , proper(i()) -> ok(i())
                   , proper(o()) -> ok(o())
                   , proper(u()) -> ok(u())
                   , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))
                   , proper^#(and(X1, X2)) -> c_27(and^#(proper(X1), proper(X2)))
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(2) -> 2
                 , nil_0() -> 2
                 , tt_0() -> 2
                 , a_0() -> 2
                 , e_0() -> 2
                 , i_0() -> 2
                 , o_0() -> 2
                 , u_0() -> 2
                 , ok_0(2) -> 2
                 , and^#_0(2, 2) -> 1
                 , c_24_0(1) -> 1
                 , proper^#_0(2) -> 1
                 , c_40_0(1) -> 1}
      
   10)
      {  proper^#(isNePal(X)) -> c_32(isNePal^#(proper(X)))
       , isNePal^#(ok(X)) -> c_44(isNePal^#(X))}
      
      The usable rules for this path are the following:
      {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
       , proper(nil()) -> ok(nil())
       , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(isList(X)) -> isList(proper(X))
       , proper(isNeList(X)) -> isNeList(proper(X))
       , proper(isQid(X)) -> isQid(proper(X))
       , proper(isNePal(X)) -> isNePal(proper(X))
       , proper(isPal(X)) -> isPal(proper(X))
       , proper(a()) -> ok(a())
       , proper(e()) -> ok(e())
       , proper(i()) -> ok(i())
       , proper(o()) -> ok(o())
       , proper(u()) -> ok(u())
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , isList(ok(X)) -> ok(isList(X))
       , isNeList(ok(X)) -> ok(isNeList(X))
       , isQid(ok(X)) -> ok(isQid(X))
       , isPal(ok(X)) -> ok(isPal(X))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
               , proper(nil()) -> ok(nil())
               , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(isList(X)) -> isList(proper(X))
               , proper(isNeList(X)) -> isNeList(proper(X))
               , proper(isQid(X)) -> isQid(proper(X))
               , proper(isNePal(X)) -> isNePal(proper(X))
               , proper(isPal(X)) -> isPal(proper(X))
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , isList(ok(X)) -> ok(isList(X))
               , isNeList(ok(X)) -> ok(isNeList(X))
               , isQid(ok(X)) -> ok(isQid(X))
               , isPal(ok(X)) -> ok(isPal(X))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , proper^#(isNePal(X)) -> c_32(isNePal^#(proper(X)))
               , isNePal^#(ok(X)) -> c_44(isNePal^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [2]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [8]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [1] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [1] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [1] x1 + [1]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {isNePal^#(ok(X)) -> c_44(isNePal^#(X))}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {isNePal^#(ok(X)) -> c_44(isNePal^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [4]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [1] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [1] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [1] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(isNePal(X)) -> c_32(isNePal^#(proper(X)))}
            and weakly orienting the rules
            {  isNePal^#(ok(X)) -> c_44(isNePal^#(X))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(isNePal(X)) -> c_32(isNePal^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [2]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [1] x1 + [1]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [13]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [1] x1 + [7]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [1] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            and weakly orienting the rules
            {  proper^#(isNePal(X)) -> c_32(isNePal^#(proper(X)))
             , isNePal^#(ok(X)) -> c_44(isNePal^#(X))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(nil()) -> ok(nil())
               , proper(tt()) -> ok(tt())
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [8]
                  isList(x1) = [1] x1 + [3]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [4]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [1] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [13]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [1] x1 + [7]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [1] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                 , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(isList(X)) -> isList(proper(X))
                 , proper(isNeList(X)) -> isNeList(proper(X))
                 , proper(isQid(X)) -> isQid(proper(X))
                 , proper(isNePal(X)) -> isNePal(proper(X))
                 , proper(isPal(X)) -> isPal(proper(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , isList(ok(X)) -> ok(isList(X))
                 , isNeList(ok(X)) -> ok(isNeList(X))
                 , isQid(ok(X)) -> ok(isQid(X))
                 , isPal(ok(X)) -> ok(isPal(X))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  proper(nil()) -> ok(nil())
                 , proper(tt()) -> ok(tt())
                 , proper(a()) -> ok(a())
                 , proper(e()) -> ok(e())
                 , proper(i()) -> ok(i())
                 , proper(o()) -> ok(o())
                 , proper(u()) -> ok(u())
                 , proper^#(isNePal(X)) -> c_32(isNePal^#(proper(X)))
                 , isNePal^#(ok(X)) -> c_44(isNePal^#(X))
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                   , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(isList(X)) -> isList(proper(X))
                   , proper(isNeList(X)) -> isNeList(proper(X))
                   , proper(isQid(X)) -> isQid(proper(X))
                   , proper(isNePal(X)) -> isNePal(proper(X))
                   , proper(isPal(X)) -> isPal(proper(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , isList(ok(X)) -> ok(isList(X))
                   , isNeList(ok(X)) -> ok(isNeList(X))
                   , isQid(ok(X)) -> ok(isQid(X))
                   , isPal(ok(X)) -> ok(isPal(X))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  proper(nil()) -> ok(nil())
                   , proper(tt()) -> ok(tt())
                   , proper(a()) -> ok(a())
                   , proper(e()) -> ok(e())
                   , proper(i()) -> ok(i())
                   , proper(o()) -> ok(o())
                   , proper(u()) -> ok(u())
                   , proper^#(isNePal(X)) -> c_32(isNePal^#(proper(X)))
                   , isNePal^#(ok(X)) -> c_44(isNePal^#(X))
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(4) -> 3
                 , mark_0(6) -> 3
                 , mark_0(12) -> 3
                 , mark_0(13) -> 3
                 , mark_0(14) -> 3
                 , mark_0(15) -> 3
                 , mark_0(16) -> 3
                 , mark_0(18) -> 3
                 , nil_0() -> 4
                 , tt_0() -> 6
                 , a_0() -> 12
                 , e_0() -> 13
                 , i_0() -> 14
                 , o_0() -> 15
                 , u_0() -> 16
                 , ok_0(3) -> 18
                 , ok_0(4) -> 18
                 , ok_0(6) -> 18
                 , ok_0(12) -> 18
                 , ok_0(13) -> 18
                 , ok_0(14) -> 18
                 , ok_0(15) -> 18
                 , ok_0(16) -> 18
                 , ok_0(18) -> 18
                 , isNePal^#_0(3) -> 38
                 , isNePal^#_0(4) -> 38
                 , isNePal^#_0(6) -> 38
                 , isNePal^#_0(12) -> 38
                 , isNePal^#_0(13) -> 38
                 , isNePal^#_0(14) -> 38
                 , isNePal^#_0(15) -> 38
                 , isNePal^#_0(16) -> 38
                 , isNePal^#_0(18) -> 38
                 , proper^#_0(3) -> 51
                 , proper^#_0(4) -> 51
                 , proper^#_0(6) -> 51
                 , proper^#_0(12) -> 51
                 , proper^#_0(13) -> 51
                 , proper^#_0(14) -> 51
                 , proper^#_0(15) -> 51
                 , proper^#_0(16) -> 51
                 , proper^#_0(18) -> 51
                 , c_44_0(38) -> 38}
      
   11)
      {  proper^#(isQid(X)) -> c_31(isQid^#(proper(X)))
       , isQid^#(ok(X)) -> c_43(isQid^#(X))}
      
      The usable rules for this path are the following:
      {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
       , proper(nil()) -> ok(nil())
       , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(isList(X)) -> isList(proper(X))
       , proper(isNeList(X)) -> isNeList(proper(X))
       , proper(isQid(X)) -> isQid(proper(X))
       , proper(isNePal(X)) -> isNePal(proper(X))
       , proper(isPal(X)) -> isPal(proper(X))
       , proper(a()) -> ok(a())
       , proper(e()) -> ok(e())
       , proper(i()) -> ok(i())
       , proper(o()) -> ok(o())
       , proper(u()) -> ok(u())
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , isList(ok(X)) -> ok(isList(X))
       , isNeList(ok(X)) -> ok(isNeList(X))
       , isQid(ok(X)) -> ok(isQid(X))
       , isPal(ok(X)) -> ok(isPal(X))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
               , proper(nil()) -> ok(nil())
               , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(isList(X)) -> isList(proper(X))
               , proper(isNeList(X)) -> isNeList(proper(X))
               , proper(isQid(X)) -> isQid(proper(X))
               , proper(isNePal(X)) -> isNePal(proper(X))
               , proper(isPal(X)) -> isPal(proper(X))
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , isList(ok(X)) -> ok(isList(X))
               , isNeList(ok(X)) -> ok(isNeList(X))
               , isQid(ok(X)) -> ok(isQid(X))
               , isPal(ok(X)) -> ok(isPal(X))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , proper^#(isQid(X)) -> c_31(isQid^#(proper(X)))
               , isQid^#(ok(X)) -> c_43(isQid^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [2]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [8]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [1] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [1] x1 + [1]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {isQid^#(ok(X)) -> c_43(isQid^#(X))}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {isQid^#(ok(X)) -> c_43(isQid^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [4]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [1] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [1] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(isQid(X)) -> c_31(isQid^#(proper(X)))}
            and weakly orienting the rules
            {  isQid^#(ok(X)) -> c_43(isQid^#(X))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(isQid(X)) -> c_31(isQid^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [2]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [1] x1 + [1]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [13]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [1] x1 + [7]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [1] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            and weakly orienting the rules
            {  proper^#(isQid(X)) -> c_31(isQid^#(proper(X)))
             , isQid^#(ok(X)) -> c_43(isQid^#(X))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(nil()) -> ok(nil())
               , proper(tt()) -> ok(tt())
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [10]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [8]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [1] x1 + [4]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [1] x1 + [1]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [1] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                 , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(isList(X)) -> isList(proper(X))
                 , proper(isNeList(X)) -> isNeList(proper(X))
                 , proper(isQid(X)) -> isQid(proper(X))
                 , proper(isNePal(X)) -> isNePal(proper(X))
                 , proper(isPal(X)) -> isPal(proper(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , isList(ok(X)) -> ok(isList(X))
                 , isNeList(ok(X)) -> ok(isNeList(X))
                 , isQid(ok(X)) -> ok(isQid(X))
                 , isPal(ok(X)) -> ok(isPal(X))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  proper(nil()) -> ok(nil())
                 , proper(tt()) -> ok(tt())
                 , proper(a()) -> ok(a())
                 , proper(e()) -> ok(e())
                 , proper(i()) -> ok(i())
                 , proper(o()) -> ok(o())
                 , proper(u()) -> ok(u())
                 , proper^#(isQid(X)) -> c_31(isQid^#(proper(X)))
                 , isQid^#(ok(X)) -> c_43(isQid^#(X))
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                   , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(isList(X)) -> isList(proper(X))
                   , proper(isNeList(X)) -> isNeList(proper(X))
                   , proper(isQid(X)) -> isQid(proper(X))
                   , proper(isNePal(X)) -> isNePal(proper(X))
                   , proper(isPal(X)) -> isPal(proper(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , isList(ok(X)) -> ok(isList(X))
                   , isNeList(ok(X)) -> ok(isNeList(X))
                   , isQid(ok(X)) -> ok(isQid(X))
                   , isPal(ok(X)) -> ok(isPal(X))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  proper(nil()) -> ok(nil())
                   , proper(tt()) -> ok(tt())
                   , proper(a()) -> ok(a())
                   , proper(e()) -> ok(e())
                   , proper(i()) -> ok(i())
                   , proper(o()) -> ok(o())
                   , proper(u()) -> ok(u())
                   , proper^#(isQid(X)) -> c_31(isQid^#(proper(X)))
                   , isQid^#(ok(X)) -> c_43(isQid^#(X))
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(4) -> 3
                 , mark_0(6) -> 3
                 , mark_0(12) -> 3
                 , mark_0(13) -> 3
                 , mark_0(14) -> 3
                 , mark_0(15) -> 3
                 , mark_0(16) -> 3
                 , mark_0(18) -> 3
                 , nil_0() -> 4
                 , tt_0() -> 6
                 , a_0() -> 12
                 , e_0() -> 13
                 , i_0() -> 14
                 , o_0() -> 15
                 , u_0() -> 16
                 , ok_0(3) -> 18
                 , ok_0(4) -> 18
                 , ok_0(6) -> 18
                 , ok_0(12) -> 18
                 , ok_0(13) -> 18
                 , ok_0(14) -> 18
                 , ok_0(15) -> 18
                 , ok_0(16) -> 18
                 , ok_0(18) -> 18
                 , isQid^#_0(3) -> 32
                 , isQid^#_0(4) -> 32
                 , isQid^#_0(6) -> 32
                 , isQid^#_0(12) -> 32
                 , isQid^#_0(13) -> 32
                 , isQid^#_0(14) -> 32
                 , isQid^#_0(15) -> 32
                 , isQid^#_0(16) -> 32
                 , isQid^#_0(18) -> 32
                 , proper^#_0(3) -> 51
                 , proper^#_0(4) -> 51
                 , proper^#_0(6) -> 51
                 , proper^#_0(12) -> 51
                 , proper^#_0(13) -> 51
                 , proper^#_0(14) -> 51
                 , proper^#_0(15) -> 51
                 , proper^#_0(16) -> 51
                 , proper^#_0(18) -> 51
                 , c_43_0(32) -> 32}
      
   12)
      {  proper^#(isPal(X)) -> c_33(isPal^#(proper(X)))
       , isPal^#(ok(X)) -> c_45(isPal^#(X))}
      
      The usable rules for this path are the following:
      {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
       , proper(nil()) -> ok(nil())
       , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(isList(X)) -> isList(proper(X))
       , proper(isNeList(X)) -> isNeList(proper(X))
       , proper(isQid(X)) -> isQid(proper(X))
       , proper(isNePal(X)) -> isNePal(proper(X))
       , proper(isPal(X)) -> isPal(proper(X))
       , proper(a()) -> ok(a())
       , proper(e()) -> ok(e())
       , proper(i()) -> ok(i())
       , proper(o()) -> ok(o())
       , proper(u()) -> ok(u())
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , isList(ok(X)) -> ok(isList(X))
       , isNeList(ok(X)) -> ok(isNeList(X))
       , isQid(ok(X)) -> ok(isQid(X))
       , isPal(ok(X)) -> ok(isPal(X))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
               , proper(nil()) -> ok(nil())
               , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(isList(X)) -> isList(proper(X))
               , proper(isNeList(X)) -> isNeList(proper(X))
               , proper(isQid(X)) -> isQid(proper(X))
               , proper(isNePal(X)) -> isNePal(proper(X))
               , proper(isPal(X)) -> isPal(proper(X))
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , isList(ok(X)) -> ok(isList(X))
               , isNeList(ok(X)) -> ok(isNeList(X))
               , isQid(ok(X)) -> ok(isQid(X))
               , isPal(ok(X)) -> ok(isPal(X))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , proper^#(isPal(X)) -> c_33(isPal^#(proper(X)))
               , isPal^#(ok(X)) -> c_45(isPal^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [2]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [8]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [1] x1 + [0]
                  isPal^#(x1) = [1] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {isPal^#(ok(X)) -> c_45(isPal^#(X))}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {isPal^#(ok(X)) -> c_45(isPal^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [4]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [1] x1 + [15]
                  isPal^#(x1) = [1] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(isPal(X)) -> c_33(isPal^#(proper(X)))}
            and weakly orienting the rules
            {  isPal^#(ok(X)) -> c_45(isPal^#(X))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(isPal(X)) -> c_33(isPal^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [2]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [13]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [1] x1 + [7]
                  isPal^#(x1) = [1] x1 + [1]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            and weakly orienting the rules
            {  proper^#(isPal(X)) -> c_33(isPal^#(proper(X)))
             , isPal^#(ok(X)) -> c_45(isPal^#(X))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(nil()) -> ok(nil())
               , proper(tt()) -> ok(tt())
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [3]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [4]
                  isNePal(x1) = [1] x1 + [8]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [4]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [8]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [1] x1 + [5]
                  isPal^#(x1) = [1] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                 , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(isList(X)) -> isList(proper(X))
                 , proper(isNeList(X)) -> isNeList(proper(X))
                 , proper(isQid(X)) -> isQid(proper(X))
                 , proper(isNePal(X)) -> isNePal(proper(X))
                 , proper(isPal(X)) -> isPal(proper(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , isList(ok(X)) -> ok(isList(X))
                 , isNeList(ok(X)) -> ok(isNeList(X))
                 , isQid(ok(X)) -> ok(isQid(X))
                 , isPal(ok(X)) -> ok(isPal(X))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  proper(nil()) -> ok(nil())
                 , proper(tt()) -> ok(tt())
                 , proper(a()) -> ok(a())
                 , proper(e()) -> ok(e())
                 , proper(i()) -> ok(i())
                 , proper(o()) -> ok(o())
                 , proper(u()) -> ok(u())
                 , proper^#(isPal(X)) -> c_33(isPal^#(proper(X)))
                 , isPal^#(ok(X)) -> c_45(isPal^#(X))
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                   , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(isList(X)) -> isList(proper(X))
                   , proper(isNeList(X)) -> isNeList(proper(X))
                   , proper(isQid(X)) -> isQid(proper(X))
                   , proper(isNePal(X)) -> isNePal(proper(X))
                   , proper(isPal(X)) -> isPal(proper(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , isList(ok(X)) -> ok(isList(X))
                   , isNeList(ok(X)) -> ok(isNeList(X))
                   , isQid(ok(X)) -> ok(isQid(X))
                   , isPal(ok(X)) -> ok(isPal(X))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  proper(nil()) -> ok(nil())
                   , proper(tt()) -> ok(tt())
                   , proper(a()) -> ok(a())
                   , proper(e()) -> ok(e())
                   , proper(i()) -> ok(i())
                   , proper(o()) -> ok(o())
                   , proper(u()) -> ok(u())
                   , proper^#(isPal(X)) -> c_33(isPal^#(proper(X)))
                   , isPal^#(ok(X)) -> c_45(isPal^#(X))
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(4) -> 3
                 , mark_0(6) -> 3
                 , mark_0(12) -> 3
                 , mark_0(13) -> 3
                 , mark_0(14) -> 3
                 , mark_0(15) -> 3
                 , mark_0(16) -> 3
                 , mark_0(18) -> 3
                 , nil_0() -> 4
                 , tt_0() -> 6
                 , a_0() -> 12
                 , e_0() -> 13
                 , i_0() -> 14
                 , o_0() -> 15
                 , u_0() -> 16
                 , ok_0(3) -> 18
                 , ok_0(4) -> 18
                 , ok_0(6) -> 18
                 , ok_0(12) -> 18
                 , ok_0(13) -> 18
                 , ok_0(14) -> 18
                 , ok_0(15) -> 18
                 , ok_0(16) -> 18
                 , ok_0(18) -> 18
                 , proper^#_0(3) -> 51
                 , proper^#_0(4) -> 51
                 , proper^#_0(6) -> 51
                 , proper^#_0(12) -> 51
                 , proper^#_0(13) -> 51
                 , proper^#_0(14) -> 51
                 , proper^#_0(15) -> 51
                 , proper^#_0(16) -> 51
                 , proper^#_0(18) -> 51
                 , isPal^#_0(3) -> 62
                 , isPal^#_0(4) -> 62
                 , isPal^#_0(6) -> 62
                 , isPal^#_0(12) -> 62
                 , isPal^#_0(13) -> 62
                 , isPal^#_0(14) -> 62
                 , isPal^#_0(15) -> 62
                 , isPal^#_0(16) -> 62
                 , isPal^#_0(18) -> 62
                 , c_45_0(62) -> 62}
      
   13)
      {proper^#(__(X1, X2)) -> c_25(__^#(proper(X1), proper(X2)))}
      
      The usable rules for this path are the following:
      {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
       , proper(nil()) -> ok(nil())
       , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(isList(X)) -> isList(proper(X))
       , proper(isNeList(X)) -> isNeList(proper(X))
       , proper(isQid(X)) -> isQid(proper(X))
       , proper(isNePal(X)) -> isNePal(proper(X))
       , proper(isPal(X)) -> isPal(proper(X))
       , proper(a()) -> ok(a())
       , proper(e()) -> ok(e())
       , proper(i()) -> ok(i())
       , proper(o()) -> ok(o())
       , proper(u()) -> ok(u())
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , isList(ok(X)) -> ok(isList(X))
       , isNeList(ok(X)) -> ok(isNeList(X))
       , isQid(ok(X)) -> ok(isQid(X))
       , isPal(ok(X)) -> ok(isPal(X))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
               , proper(nil()) -> ok(nil())
               , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(isList(X)) -> isList(proper(X))
               , proper(isNeList(X)) -> isNeList(proper(X))
               , proper(isQid(X)) -> isQid(proper(X))
               , proper(isNePal(X)) -> isNePal(proper(X))
               , proper(isPal(X)) -> isPal(proper(X))
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , isList(ok(X)) -> ok(isList(X))
               , isNeList(ok(X)) -> ok(isNeList(X))
               , isQid(ok(X)) -> ok(isQid(X))
               , isPal(ok(X)) -> ok(isPal(X))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , proper^#(__(X1, X2)) -> c_25(__^#(proper(X1), proper(X2)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [2]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_25(x1) = [1] x1 + [1]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(__(X1, X2)) -> c_25(__^#(proper(X1), proper(X2)))}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(__(X1, X2)) -> c_25(__^#(proper(X1), proper(X2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [7]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_25(x1) = [1] x1 + [1]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            and weakly orienting the rules
            {  proper^#(__(X1, X2)) -> c_25(__^#(proper(X1), proper(X2)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(nil()) -> ok(nil())
               , proper(tt()) -> ok(tt())
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [5]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [1]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [1]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [2]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [13]
                  c_25(x1) = [1] x1 + [1]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                 , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(isList(X)) -> isList(proper(X))
                 , proper(isNeList(X)) -> isNeList(proper(X))
                 , proper(isQid(X)) -> isQid(proper(X))
                 , proper(isNePal(X)) -> isNePal(proper(X))
                 , proper(isPal(X)) -> isPal(proper(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , isList(ok(X)) -> ok(isList(X))
                 , isNeList(ok(X)) -> ok(isNeList(X))
                 , isQid(ok(X)) -> ok(isQid(X))
                 , isPal(ok(X)) -> ok(isPal(X))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  proper(nil()) -> ok(nil())
                 , proper(tt()) -> ok(tt())
                 , proper(a()) -> ok(a())
                 , proper(e()) -> ok(e())
                 , proper(i()) -> ok(i())
                 , proper(o()) -> ok(o())
                 , proper(u()) -> ok(u())
                 , proper^#(__(X1, X2)) -> c_25(__^#(proper(X1), proper(X2)))
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                   , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(isList(X)) -> isList(proper(X))
                   , proper(isNeList(X)) -> isNeList(proper(X))
                   , proper(isQid(X)) -> isQid(proper(X))
                   , proper(isNePal(X)) -> isNePal(proper(X))
                   , proper(isPal(X)) -> isPal(proper(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , isList(ok(X)) -> ok(isList(X))
                   , isNeList(ok(X)) -> ok(isNeList(X))
                   , isQid(ok(X)) -> ok(isQid(X))
                   , isPal(ok(X)) -> ok(isPal(X))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  proper(nil()) -> ok(nil())
                   , proper(tt()) -> ok(tt())
                   , proper(a()) -> ok(a())
                   , proper(e()) -> ok(e())
                   , proper(i()) -> ok(i())
                   , proper(o()) -> ok(o())
                   , proper(u()) -> ok(u())
                   , proper^#(__(X1, X2)) -> c_25(__^#(proper(X1), proper(X2)))
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(4) -> 3
                 , mark_0(6) -> 3
                 , mark_0(12) -> 3
                 , mark_0(13) -> 3
                 , mark_0(14) -> 3
                 , mark_0(15) -> 3
                 , mark_0(16) -> 3
                 , mark_0(18) -> 3
                 , nil_0() -> 4
                 , tt_0() -> 6
                 , a_0() -> 12
                 , e_0() -> 13
                 , i_0() -> 14
                 , o_0() -> 15
                 , u_0() -> 16
                 , ok_0(3) -> 18
                 , ok_0(4) -> 18
                 , ok_0(6) -> 18
                 , ok_0(12) -> 18
                 , ok_0(13) -> 18
                 , ok_0(14) -> 18
                 , ok_0(15) -> 18
                 , ok_0(16) -> 18
                 , ok_0(18) -> 18
                 , __^#_0(3, 3) -> 22
                 , __^#_0(3, 4) -> 22
                 , __^#_0(3, 6) -> 22
                 , __^#_0(3, 12) -> 22
                 , __^#_0(3, 13) -> 22
                 , __^#_0(3, 14) -> 22
                 , __^#_0(3, 15) -> 22
                 , __^#_0(3, 16) -> 22
                 , __^#_0(3, 18) -> 22
                 , __^#_0(4, 3) -> 22
                 , __^#_0(4, 4) -> 22
                 , __^#_0(4, 6) -> 22
                 , __^#_0(4, 12) -> 22
                 , __^#_0(4, 13) -> 22
                 , __^#_0(4, 14) -> 22
                 , __^#_0(4, 15) -> 22
                 , __^#_0(4, 16) -> 22
                 , __^#_0(4, 18) -> 22
                 , __^#_0(6, 3) -> 22
                 , __^#_0(6, 4) -> 22
                 , __^#_0(6, 6) -> 22
                 , __^#_0(6, 12) -> 22
                 , __^#_0(6, 13) -> 22
                 , __^#_0(6, 14) -> 22
                 , __^#_0(6, 15) -> 22
                 , __^#_0(6, 16) -> 22
                 , __^#_0(6, 18) -> 22
                 , __^#_0(12, 3) -> 22
                 , __^#_0(12, 4) -> 22
                 , __^#_0(12, 6) -> 22
                 , __^#_0(12, 12) -> 22
                 , __^#_0(12, 13) -> 22
                 , __^#_0(12, 14) -> 22
                 , __^#_0(12, 15) -> 22
                 , __^#_0(12, 16) -> 22
                 , __^#_0(12, 18) -> 22
                 , __^#_0(13, 3) -> 22
                 , __^#_0(13, 4) -> 22
                 , __^#_0(13, 6) -> 22
                 , __^#_0(13, 12) -> 22
                 , __^#_0(13, 13) -> 22
                 , __^#_0(13, 14) -> 22
                 , __^#_0(13, 15) -> 22
                 , __^#_0(13, 16) -> 22
                 , __^#_0(13, 18) -> 22
                 , __^#_0(14, 3) -> 22
                 , __^#_0(14, 4) -> 22
                 , __^#_0(14, 6) -> 22
                 , __^#_0(14, 12) -> 22
                 , __^#_0(14, 13) -> 22
                 , __^#_0(14, 14) -> 22
                 , __^#_0(14, 15) -> 22
                 , __^#_0(14, 16) -> 22
                 , __^#_0(14, 18) -> 22
                 , __^#_0(15, 3) -> 22
                 , __^#_0(15, 4) -> 22
                 , __^#_0(15, 6) -> 22
                 , __^#_0(15, 12) -> 22
                 , __^#_0(15, 13) -> 22
                 , __^#_0(15, 14) -> 22
                 , __^#_0(15, 15) -> 22
                 , __^#_0(15, 16) -> 22
                 , __^#_0(15, 18) -> 22
                 , __^#_0(16, 3) -> 22
                 , __^#_0(16, 4) -> 22
                 , __^#_0(16, 6) -> 22
                 , __^#_0(16, 12) -> 22
                 , __^#_0(16, 13) -> 22
                 , __^#_0(16, 14) -> 22
                 , __^#_0(16, 15) -> 22
                 , __^#_0(16, 16) -> 22
                 , __^#_0(16, 18) -> 22
                 , __^#_0(18, 3) -> 22
                 , __^#_0(18, 4) -> 22
                 , __^#_0(18, 6) -> 22
                 , __^#_0(18, 12) -> 22
                 , __^#_0(18, 13) -> 22
                 , __^#_0(18, 14) -> 22
                 , __^#_0(18, 15) -> 22
                 , __^#_0(18, 16) -> 22
                 , __^#_0(18, 18) -> 22
                 , proper^#_0(3) -> 51
                 , proper^#_0(4) -> 51
                 , proper^#_0(6) -> 51
                 , proper^#_0(12) -> 51
                 , proper^#_0(13) -> 51
                 , proper^#_0(14) -> 51
                 , proper^#_0(15) -> 51
                 , proper^#_0(16) -> 51
                 , proper^#_0(18) -> 51}
      
   14)
      {proper^#(and(X1, X2)) -> c_27(and^#(proper(X1), proper(X2)))}
      
      The usable rules for this path are the following:
      {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
       , proper(nil()) -> ok(nil())
       , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(isList(X)) -> isList(proper(X))
       , proper(isNeList(X)) -> isNeList(proper(X))
       , proper(isQid(X)) -> isQid(proper(X))
       , proper(isNePal(X)) -> isNePal(proper(X))
       , proper(isPal(X)) -> isPal(proper(X))
       , proper(a()) -> ok(a())
       , proper(e()) -> ok(e())
       , proper(i()) -> ok(i())
       , proper(o()) -> ok(o())
       , proper(u()) -> ok(u())
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , isList(ok(X)) -> ok(isList(X))
       , isNeList(ok(X)) -> ok(isNeList(X))
       , isQid(ok(X)) -> ok(isQid(X))
       , isPal(ok(X)) -> ok(isPal(X))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
               , proper(nil()) -> ok(nil())
               , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(isList(X)) -> isList(proper(X))
               , proper(isNeList(X)) -> isNeList(proper(X))
               , proper(isQid(X)) -> isQid(proper(X))
               , proper(isNePal(X)) -> isNePal(proper(X))
               , proper(isPal(X)) -> isPal(proper(X))
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , isList(ok(X)) -> ok(isList(X))
               , isNeList(ok(X)) -> ok(isNeList(X))
               , isQid(ok(X)) -> ok(isQid(X))
               , isPal(ok(X)) -> ok(isPal(X))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , proper^#(and(X1, X2)) -> c_27(and^#(proper(X1), proper(X2)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [1]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [1] x1 + [1]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(and(X1, X2)) -> c_27(and^#(proper(X1), proper(X2)))}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(and(X1, X2)) -> c_27(and^#(proper(X1), proper(X2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [7]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [1] x1 + [1]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            and weakly orienting the rules
            {  proper^#(and(X1, X2)) -> c_27(and^#(proper(X1), proper(X2)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(nil()) -> ok(nil())
               , proper(tt()) -> ok(tt())
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [1]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [2]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [13]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [1] x1 + [1]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                 , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(isList(X)) -> isList(proper(X))
                 , proper(isNeList(X)) -> isNeList(proper(X))
                 , proper(isQid(X)) -> isQid(proper(X))
                 , proper(isNePal(X)) -> isNePal(proper(X))
                 , proper(isPal(X)) -> isPal(proper(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , isList(ok(X)) -> ok(isList(X))
                 , isNeList(ok(X)) -> ok(isNeList(X))
                 , isQid(ok(X)) -> ok(isQid(X))
                 , isPal(ok(X)) -> ok(isPal(X))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  proper(nil()) -> ok(nil())
                 , proper(tt()) -> ok(tt())
                 , proper(a()) -> ok(a())
                 , proper(e()) -> ok(e())
                 , proper(i()) -> ok(i())
                 , proper(o()) -> ok(o())
                 , proper(u()) -> ok(u())
                 , proper^#(and(X1, X2)) -> c_27(and^#(proper(X1), proper(X2)))
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                   , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(isList(X)) -> isList(proper(X))
                   , proper(isNeList(X)) -> isNeList(proper(X))
                   , proper(isQid(X)) -> isQid(proper(X))
                   , proper(isNePal(X)) -> isNePal(proper(X))
                   , proper(isPal(X)) -> isPal(proper(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , isList(ok(X)) -> ok(isList(X))
                   , isNeList(ok(X)) -> ok(isNeList(X))
                   , isQid(ok(X)) -> ok(isQid(X))
                   , isPal(ok(X)) -> ok(isPal(X))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  proper(nil()) -> ok(nil())
                   , proper(tt()) -> ok(tt())
                   , proper(a()) -> ok(a())
                   , proper(e()) -> ok(e())
                   , proper(i()) -> ok(i())
                   , proper(o()) -> ok(o())
                   , proper(u()) -> ok(u())
                   , proper^#(and(X1, X2)) -> c_27(and^#(proper(X1), proper(X2)))
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(4) -> 3
                 , mark_0(6) -> 3
                 , mark_0(12) -> 3
                 , mark_0(13) -> 3
                 , mark_0(14) -> 3
                 , mark_0(15) -> 3
                 , mark_0(16) -> 3
                 , mark_0(18) -> 3
                 , nil_0() -> 4
                 , tt_0() -> 6
                 , a_0() -> 12
                 , e_0() -> 13
                 , i_0() -> 14
                 , o_0() -> 15
                 , u_0() -> 16
                 , ok_0(3) -> 18
                 , ok_0(4) -> 18
                 , ok_0(6) -> 18
                 , ok_0(12) -> 18
                 , ok_0(13) -> 18
                 , ok_0(14) -> 18
                 , ok_0(15) -> 18
                 , ok_0(16) -> 18
                 , ok_0(18) -> 18
                 , and^#_0(3, 3) -> 30
                 , and^#_0(3, 4) -> 30
                 , and^#_0(3, 6) -> 30
                 , and^#_0(3, 12) -> 30
                 , and^#_0(3, 13) -> 30
                 , and^#_0(3, 14) -> 30
                 , and^#_0(3, 15) -> 30
                 , and^#_0(3, 16) -> 30
                 , and^#_0(3, 18) -> 30
                 , and^#_0(4, 3) -> 30
                 , and^#_0(4, 4) -> 30
                 , and^#_0(4, 6) -> 30
                 , and^#_0(4, 12) -> 30
                 , and^#_0(4, 13) -> 30
                 , and^#_0(4, 14) -> 30
                 , and^#_0(4, 15) -> 30
                 , and^#_0(4, 16) -> 30
                 , and^#_0(4, 18) -> 30
                 , and^#_0(6, 3) -> 30
                 , and^#_0(6, 4) -> 30
                 , and^#_0(6, 6) -> 30
                 , and^#_0(6, 12) -> 30
                 , and^#_0(6, 13) -> 30
                 , and^#_0(6, 14) -> 30
                 , and^#_0(6, 15) -> 30
                 , and^#_0(6, 16) -> 30
                 , and^#_0(6, 18) -> 30
                 , and^#_0(12, 3) -> 30
                 , and^#_0(12, 4) -> 30
                 , and^#_0(12, 6) -> 30
                 , and^#_0(12, 12) -> 30
                 , and^#_0(12, 13) -> 30
                 , and^#_0(12, 14) -> 30
                 , and^#_0(12, 15) -> 30
                 , and^#_0(12, 16) -> 30
                 , and^#_0(12, 18) -> 30
                 , and^#_0(13, 3) -> 30
                 , and^#_0(13, 4) -> 30
                 , and^#_0(13, 6) -> 30
                 , and^#_0(13, 12) -> 30
                 , and^#_0(13, 13) -> 30
                 , and^#_0(13, 14) -> 30
                 , and^#_0(13, 15) -> 30
                 , and^#_0(13, 16) -> 30
                 , and^#_0(13, 18) -> 30
                 , and^#_0(14, 3) -> 30
                 , and^#_0(14, 4) -> 30
                 , and^#_0(14, 6) -> 30
                 , and^#_0(14, 12) -> 30
                 , and^#_0(14, 13) -> 30
                 , and^#_0(14, 14) -> 30
                 , and^#_0(14, 15) -> 30
                 , and^#_0(14, 16) -> 30
                 , and^#_0(14, 18) -> 30
                 , and^#_0(15, 3) -> 30
                 , and^#_0(15, 4) -> 30
                 , and^#_0(15, 6) -> 30
                 , and^#_0(15, 12) -> 30
                 , and^#_0(15, 13) -> 30
                 , and^#_0(15, 14) -> 30
                 , and^#_0(15, 15) -> 30
                 , and^#_0(15, 16) -> 30
                 , and^#_0(15, 18) -> 30
                 , and^#_0(16, 3) -> 30
                 , and^#_0(16, 4) -> 30
                 , and^#_0(16, 6) -> 30
                 , and^#_0(16, 12) -> 30
                 , and^#_0(16, 13) -> 30
                 , and^#_0(16, 14) -> 30
                 , and^#_0(16, 15) -> 30
                 , and^#_0(16, 16) -> 30
                 , and^#_0(16, 18) -> 30
                 , and^#_0(18, 3) -> 30
                 , and^#_0(18, 4) -> 30
                 , and^#_0(18, 6) -> 30
                 , and^#_0(18, 12) -> 30
                 , and^#_0(18, 13) -> 30
                 , and^#_0(18, 14) -> 30
                 , and^#_0(18, 15) -> 30
                 , and^#_0(18, 16) -> 30
                 , and^#_0(18, 18) -> 30
                 , proper^#_0(3) -> 51
                 , proper^#_0(4) -> 51
                 , proper^#_0(6) -> 51
                 , proper^#_0(12) -> 51
                 , proper^#_0(13) -> 51
                 , proper^#_0(14) -> 51
                 , proper^#_0(15) -> 51
                 , proper^#_0(16) -> 51
                 , proper^#_0(18) -> 51}
      
   15)
      {proper^#(isPal(X)) -> c_33(isPal^#(proper(X)))}
      
      The usable rules for this path are the following:
      {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
       , proper(nil()) -> ok(nil())
       , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(isList(X)) -> isList(proper(X))
       , proper(isNeList(X)) -> isNeList(proper(X))
       , proper(isQid(X)) -> isQid(proper(X))
       , proper(isNePal(X)) -> isNePal(proper(X))
       , proper(isPal(X)) -> isPal(proper(X))
       , proper(a()) -> ok(a())
       , proper(e()) -> ok(e())
       , proper(i()) -> ok(i())
       , proper(o()) -> ok(o())
       , proper(u()) -> ok(u())
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , isList(ok(X)) -> ok(isList(X))
       , isNeList(ok(X)) -> ok(isNeList(X))
       , isQid(ok(X)) -> ok(isQid(X))
       , isPal(ok(X)) -> ok(isPal(X))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
               , proper(nil()) -> ok(nil())
               , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(isList(X)) -> isList(proper(X))
               , proper(isNeList(X)) -> isNeList(proper(X))
               , proper(isQid(X)) -> isQid(proper(X))
               , proper(isNePal(X)) -> isNePal(proper(X))
               , proper(isPal(X)) -> isPal(proper(X))
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , isList(ok(X)) -> ok(isList(X))
               , isNeList(ok(X)) -> ok(isNeList(X))
               , isQid(ok(X)) -> ok(isQid(X))
               , isPal(ok(X)) -> ok(isPal(X))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , proper^#(isPal(X)) -> c_33(isPal^#(proper(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [3]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [8]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [1] x1 + [0]
                  isPal^#(x1) = [1] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(isPal(X)) -> c_33(isPal^#(proper(X)))}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(isPal(X)) -> c_33(isPal^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [8]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [1] x1 + [0]
                  isPal^#(x1) = [1] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            and weakly orienting the rules
            {  proper^#(isPal(X)) -> c_33(isPal^#(proper(X)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(nil()) -> ok(nil())
               , proper(tt()) -> ok(tt())
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [3]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [1] x1 + [8]
                  isPal^#(x1) = [1] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                 , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(isList(X)) -> isList(proper(X))
                 , proper(isNeList(X)) -> isNeList(proper(X))
                 , proper(isQid(X)) -> isQid(proper(X))
                 , proper(isNePal(X)) -> isNePal(proper(X))
                 , proper(isPal(X)) -> isPal(proper(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , isList(ok(X)) -> ok(isList(X))
                 , isNeList(ok(X)) -> ok(isNeList(X))
                 , isQid(ok(X)) -> ok(isQid(X))
                 , isPal(ok(X)) -> ok(isPal(X))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  proper(nil()) -> ok(nil())
                 , proper(tt()) -> ok(tt())
                 , proper(a()) -> ok(a())
                 , proper(e()) -> ok(e())
                 , proper(i()) -> ok(i())
                 , proper(o()) -> ok(o())
                 , proper(u()) -> ok(u())
                 , proper^#(isPal(X)) -> c_33(isPal^#(proper(X)))
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                   , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(isList(X)) -> isList(proper(X))
                   , proper(isNeList(X)) -> isNeList(proper(X))
                   , proper(isQid(X)) -> isQid(proper(X))
                   , proper(isNePal(X)) -> isNePal(proper(X))
                   , proper(isPal(X)) -> isPal(proper(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , isList(ok(X)) -> ok(isList(X))
                   , isNeList(ok(X)) -> ok(isNeList(X))
                   , isQid(ok(X)) -> ok(isQid(X))
                   , isPal(ok(X)) -> ok(isPal(X))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  proper(nil()) -> ok(nil())
                   , proper(tt()) -> ok(tt())
                   , proper(a()) -> ok(a())
                   , proper(e()) -> ok(e())
                   , proper(i()) -> ok(i())
                   , proper(o()) -> ok(o())
                   , proper(u()) -> ok(u())
                   , proper^#(isPal(X)) -> c_33(isPal^#(proper(X)))
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(4) -> 3
                 , mark_0(6) -> 3
                 , mark_0(12) -> 3
                 , mark_0(13) -> 3
                 , mark_0(14) -> 3
                 , mark_0(15) -> 3
                 , mark_0(16) -> 3
                 , mark_0(18) -> 3
                 , nil_0() -> 4
                 , tt_0() -> 6
                 , a_0() -> 12
                 , e_0() -> 13
                 , i_0() -> 14
                 , o_0() -> 15
                 , u_0() -> 16
                 , ok_0(3) -> 18
                 , ok_0(4) -> 18
                 , ok_0(6) -> 18
                 , ok_0(12) -> 18
                 , ok_0(13) -> 18
                 , ok_0(14) -> 18
                 , ok_0(15) -> 18
                 , ok_0(16) -> 18
                 , ok_0(18) -> 18
                 , proper^#_0(3) -> 51
                 , proper^#_0(4) -> 51
                 , proper^#_0(6) -> 51
                 , proper^#_0(12) -> 51
                 , proper^#_0(13) -> 51
                 , proper^#_0(14) -> 51
                 , proper^#_0(15) -> 51
                 , proper^#_0(16) -> 51
                 , proper^#_0(18) -> 51
                 , isPal^#_0(3) -> 62
                 , isPal^#_0(4) -> 62
                 , isPal^#_0(6) -> 62
                 , isPal^#_0(12) -> 62
                 , isPal^#_0(13) -> 62
                 , isPal^#_0(14) -> 62
                 , isPal^#_0(15) -> 62
                 , isPal^#_0(16) -> 62
                 , isPal^#_0(18) -> 62}
      
   16)
      {proper^#(isList(X)) -> c_29(isList^#(proper(X)))}
      
      The usable rules for this path are the following:
      {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
       , proper(nil()) -> ok(nil())
       , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(isList(X)) -> isList(proper(X))
       , proper(isNeList(X)) -> isNeList(proper(X))
       , proper(isQid(X)) -> isQid(proper(X))
       , proper(isNePal(X)) -> isNePal(proper(X))
       , proper(isPal(X)) -> isPal(proper(X))
       , proper(a()) -> ok(a())
       , proper(e()) -> ok(e())
       , proper(i()) -> ok(i())
       , proper(o()) -> ok(o())
       , proper(u()) -> ok(u())
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , isList(ok(X)) -> ok(isList(X))
       , isNeList(ok(X)) -> ok(isNeList(X))
       , isQid(ok(X)) -> ok(isQid(X))
       , isPal(ok(X)) -> ok(isPal(X))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
               , proper(nil()) -> ok(nil())
               , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(isList(X)) -> isList(proper(X))
               , proper(isNeList(X)) -> isNeList(proper(X))
               , proper(isQid(X)) -> isQid(proper(X))
               , proper(isNePal(X)) -> isNePal(proper(X))
               , proper(isPal(X)) -> isPal(proper(X))
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , isList(ok(X)) -> ok(isList(X))
               , isNeList(ok(X)) -> ok(isNeList(X))
               , isQid(ok(X)) -> ok(isQid(X))
               , isPal(ok(X)) -> ok(isPal(X))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , proper^#(isList(X)) -> c_29(isList^#(proper(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [8]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [1] x1 + [8]
                  isList^#(x1) = [1] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(isList(X)) -> c_29(isList^#(proper(X)))}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(isList(X)) -> c_29(isList^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [8]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [1] x1 + [0]
                  isList^#(x1) = [1] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            and weakly orienting the rules
            {  proper^#(isList(X)) -> c_29(isList^#(proper(X)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(nil()) -> ok(nil())
               , proper(tt()) -> ok(tt())
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [5]
                  nil() = [7]
                  and(x1, x2) = [1] x1 + [1] x2 + [3]
                  tt() = [8]
                  isList(x1) = [1] x1 + [7]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [2]
                  isNePal(x1) = [1] x1 + [8]
                  isPal(x1) = [1] x1 + [0]
                  a() = [8]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [1] x1 + [0]
                  isList^#(x1) = [1] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                 , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(isList(X)) -> isList(proper(X))
                 , proper(isNeList(X)) -> isNeList(proper(X))
                 , proper(isQid(X)) -> isQid(proper(X))
                 , proper(isNePal(X)) -> isNePal(proper(X))
                 , proper(isPal(X)) -> isPal(proper(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , isList(ok(X)) -> ok(isList(X))
                 , isNeList(ok(X)) -> ok(isNeList(X))
                 , isQid(ok(X)) -> ok(isQid(X))
                 , isPal(ok(X)) -> ok(isPal(X))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  proper(nil()) -> ok(nil())
                 , proper(tt()) -> ok(tt())
                 , proper(a()) -> ok(a())
                 , proper(e()) -> ok(e())
                 , proper(i()) -> ok(i())
                 , proper(o()) -> ok(o())
                 , proper(u()) -> ok(u())
                 , proper^#(isList(X)) -> c_29(isList^#(proper(X)))
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                   , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(isList(X)) -> isList(proper(X))
                   , proper(isNeList(X)) -> isNeList(proper(X))
                   , proper(isQid(X)) -> isQid(proper(X))
                   , proper(isNePal(X)) -> isNePal(proper(X))
                   , proper(isPal(X)) -> isPal(proper(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , isList(ok(X)) -> ok(isList(X))
                   , isNeList(ok(X)) -> ok(isNeList(X))
                   , isQid(ok(X)) -> ok(isQid(X))
                   , isPal(ok(X)) -> ok(isPal(X))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  proper(nil()) -> ok(nil())
                   , proper(tt()) -> ok(tt())
                   , proper(a()) -> ok(a())
                   , proper(e()) -> ok(e())
                   , proper(i()) -> ok(i())
                   , proper(o()) -> ok(o())
                   , proper(u()) -> ok(u())
                   , proper^#(isList(X)) -> c_29(isList^#(proper(X)))
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(4) -> 3
                 , mark_0(6) -> 3
                 , mark_0(12) -> 3
                 , mark_0(13) -> 3
                 , mark_0(14) -> 3
                 , mark_0(15) -> 3
                 , mark_0(16) -> 3
                 , mark_0(18) -> 3
                 , nil_0() -> 4
                 , tt_0() -> 6
                 , a_0() -> 12
                 , e_0() -> 13
                 , i_0() -> 14
                 , o_0() -> 15
                 , u_0() -> 16
                 , ok_0(3) -> 18
                 , ok_0(4) -> 18
                 , ok_0(6) -> 18
                 , ok_0(12) -> 18
                 , ok_0(13) -> 18
                 , ok_0(14) -> 18
                 , ok_0(15) -> 18
                 , ok_0(16) -> 18
                 , ok_0(18) -> 18
                 , proper^#_0(3) -> 51
                 , proper^#_0(4) -> 51
                 , proper^#_0(6) -> 51
                 , proper^#_0(12) -> 51
                 , proper^#_0(13) -> 51
                 , proper^#_0(14) -> 51
                 , proper^#_0(15) -> 51
                 , proper^#_0(16) -> 51
                 , proper^#_0(18) -> 51
                 , isList^#_0(3) -> 57
                 , isList^#_0(4) -> 57
                 , isList^#_0(6) -> 57
                 , isList^#_0(12) -> 57
                 , isList^#_0(13) -> 57
                 , isList^#_0(14) -> 57
                 , isList^#_0(15) -> 57
                 , isList^#_0(16) -> 57
                 , isList^#_0(18) -> 57}
      
   17)
      {  proper^#(isList(X)) -> c_29(isList^#(proper(X)))
       , isList^#(ok(X)) -> c_41(isList^#(X))}
      
      The usable rules for this path are the following:
      {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
       , proper(nil()) -> ok(nil())
       , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(isList(X)) -> isList(proper(X))
       , proper(isNeList(X)) -> isNeList(proper(X))
       , proper(isQid(X)) -> isQid(proper(X))
       , proper(isNePal(X)) -> isNePal(proper(X))
       , proper(isPal(X)) -> isPal(proper(X))
       , proper(a()) -> ok(a())
       , proper(e()) -> ok(e())
       , proper(i()) -> ok(i())
       , proper(o()) -> ok(o())
       , proper(u()) -> ok(u())
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , isList(ok(X)) -> ok(isList(X))
       , isNeList(ok(X)) -> ok(isNeList(X))
       , isQid(ok(X)) -> ok(isQid(X))
       , isPal(ok(X)) -> ok(isPal(X))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
               , proper(nil()) -> ok(nil())
               , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(isList(X)) -> isList(proper(X))
               , proper(isNeList(X)) -> isNeList(proper(X))
               , proper(isQid(X)) -> isQid(proper(X))
               , proper(isNePal(X)) -> isNePal(proper(X))
               , proper(isPal(X)) -> isPal(proper(X))
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , isList(ok(X)) -> ok(isList(X))
               , isNeList(ok(X)) -> ok(isNeList(X))
               , isQid(ok(X)) -> ok(isQid(X))
               , isPal(ok(X)) -> ok(isPal(X))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , proper^#(isList(X)) -> c_29(isList^#(proper(X)))
               , isList^#(ok(X)) -> c_41(isList^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , isList^#(ok(X)) -> c_41(isList^#(X))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isList^#(ok(X)) -> c_41(isList^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [2]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [1] x1 + [1]
                  isList^#(x1) = [1] x1 + [15]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [1] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(isList(X)) -> c_29(isList^#(proper(X)))}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , isList^#(ok(X)) -> c_41(isList^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(isList(X)) -> c_29(isList^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [2]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [8]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [1] x1 + [0]
                  isList^#(x1) = [1] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [1] x1 + [1]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            and weakly orienting the rules
            {  proper^#(isList(X)) -> c_29(isList^#(proper(X)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , isList^#(ok(X)) -> c_41(isList^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(nil()) -> ok(nil())
               , proper(tt()) -> ok(tt())
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [8]
                  nil() = [15]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [1] x1 + [0]
                  isList^#(x1) = [1] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [1] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                 , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(isList(X)) -> isList(proper(X))
                 , proper(isNeList(X)) -> isNeList(proper(X))
                 , proper(isQid(X)) -> isQid(proper(X))
                 , proper(isNePal(X)) -> isNePal(proper(X))
                 , proper(isPal(X)) -> isPal(proper(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , isList(ok(X)) -> ok(isList(X))
                 , isNeList(ok(X)) -> ok(isNeList(X))
                 , isQid(ok(X)) -> ok(isQid(X))
                 , isPal(ok(X)) -> ok(isPal(X))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  proper(nil()) -> ok(nil())
                 , proper(tt()) -> ok(tt())
                 , proper(a()) -> ok(a())
                 , proper(e()) -> ok(e())
                 , proper(i()) -> ok(i())
                 , proper(o()) -> ok(o())
                 , proper(u()) -> ok(u())
                 , proper^#(isList(X)) -> c_29(isList^#(proper(X)))
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , isList^#(ok(X)) -> c_41(isList^#(X))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                   , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(isList(X)) -> isList(proper(X))
                   , proper(isNeList(X)) -> isNeList(proper(X))
                   , proper(isQid(X)) -> isQid(proper(X))
                   , proper(isNePal(X)) -> isNePal(proper(X))
                   , proper(isPal(X)) -> isPal(proper(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , isList(ok(X)) -> ok(isList(X))
                   , isNeList(ok(X)) -> ok(isNeList(X))
                   , isQid(ok(X)) -> ok(isQid(X))
                   , isPal(ok(X)) -> ok(isPal(X))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  proper(nil()) -> ok(nil())
                   , proper(tt()) -> ok(tt())
                   , proper(a()) -> ok(a())
                   , proper(e()) -> ok(e())
                   , proper(i()) -> ok(i())
                   , proper(o()) -> ok(o())
                   , proper(u()) -> ok(u())
                   , proper^#(isList(X)) -> c_29(isList^#(proper(X)))
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , isList^#(ok(X)) -> c_41(isList^#(X))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(4) -> 3
                 , mark_0(6) -> 3
                 , mark_0(12) -> 3
                 , mark_0(13) -> 3
                 , mark_0(14) -> 3
                 , mark_0(15) -> 3
                 , mark_0(16) -> 3
                 , mark_0(18) -> 3
                 , nil_0() -> 4
                 , tt_0() -> 6
                 , a_0() -> 12
                 , e_0() -> 13
                 , i_0() -> 14
                 , o_0() -> 15
                 , u_0() -> 16
                 , ok_0(3) -> 18
                 , ok_0(4) -> 18
                 , ok_0(6) -> 18
                 , ok_0(12) -> 18
                 , ok_0(13) -> 18
                 , ok_0(14) -> 18
                 , ok_0(15) -> 18
                 , ok_0(16) -> 18
                 , ok_0(18) -> 18
                 , proper^#_0(3) -> 51
                 , proper^#_0(4) -> 51
                 , proper^#_0(6) -> 51
                 , proper^#_0(12) -> 51
                 , proper^#_0(13) -> 51
                 , proper^#_0(14) -> 51
                 , proper^#_0(15) -> 51
                 , proper^#_0(16) -> 51
                 , proper^#_0(18) -> 51
                 , isList^#_0(3) -> 57
                 , isList^#_0(4) -> 57
                 , isList^#_0(6) -> 57
                 , isList^#_0(12) -> 57
                 , isList^#_0(13) -> 57
                 , isList^#_0(14) -> 57
                 , isList^#_0(15) -> 57
                 , isList^#_0(16) -> 57
                 , isList^#_0(18) -> 57
                 , c_41_0(57) -> 57}
      
   18)
      {  proper^#(isNeList(X)) -> c_30(isNeList^#(proper(X)))
       , isNeList^#(ok(X)) -> c_42(isNeList^#(X))}
      
      The usable rules for this path are the following:
      {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
       , proper(nil()) -> ok(nil())
       , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(isList(X)) -> isList(proper(X))
       , proper(isNeList(X)) -> isNeList(proper(X))
       , proper(isQid(X)) -> isQid(proper(X))
       , proper(isNePal(X)) -> isNePal(proper(X))
       , proper(isPal(X)) -> isPal(proper(X))
       , proper(a()) -> ok(a())
       , proper(e()) -> ok(e())
       , proper(i()) -> ok(i())
       , proper(o()) -> ok(o())
       , proper(u()) -> ok(u())
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , isList(ok(X)) -> ok(isList(X))
       , isNeList(ok(X)) -> ok(isNeList(X))
       , isQid(ok(X)) -> ok(isQid(X))
       , isPal(ok(X)) -> ok(isPal(X))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
               , proper(nil()) -> ok(nil())
               , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(isList(X)) -> isList(proper(X))
               , proper(isNeList(X)) -> isNeList(proper(X))
               , proper(isQid(X)) -> isQid(proper(X))
               , proper(isNePal(X)) -> isNePal(proper(X))
               , proper(isPal(X)) -> isPal(proper(X))
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , isList(ok(X)) -> ok(isList(X))
               , isNeList(ok(X)) -> ok(isNeList(X))
               , isQid(ok(X)) -> ok(isQid(X))
               , isPal(ok(X)) -> ok(isPal(X))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , proper^#(isNeList(X)) -> c_30(isNeList^#(proper(X)))
               , isNeList^#(ok(X)) -> c_42(isNeList^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , isNeList^#(ok(X)) -> c_42(isNeList^#(X))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNeList^#(ok(X)) -> c_42(isNeList^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [2]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [8]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [1] x1 + [15]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [1] x1 + [1]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [1] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(isNeList(X)) -> c_30(isNeList^#(proper(X)))}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , isNeList^#(ok(X)) -> c_42(isNeList^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(isNeList(X)) -> c_30(isNeList^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [2]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [8]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [1] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [1] x1 + [1]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            and weakly orienting the rules
            {  proper^#(isNeList(X)) -> c_30(isNeList^#(proper(X)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , isNeList^#(ok(X)) -> c_42(isNeList^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(nil()) -> ok(nil())
               , proper(tt()) -> ok(tt())
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [2]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [8]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [7]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [8]
                  isPal(x1) = [1] x1 + [8]
                  a() = [0]
                  e() = [4]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [1] x1 + [1]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [1] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                 , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(isList(X)) -> isList(proper(X))
                 , proper(isNeList(X)) -> isNeList(proper(X))
                 , proper(isQid(X)) -> isQid(proper(X))
                 , proper(isNePal(X)) -> isNePal(proper(X))
                 , proper(isPal(X)) -> isPal(proper(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , isList(ok(X)) -> ok(isList(X))
                 , isNeList(ok(X)) -> ok(isNeList(X))
                 , isQid(ok(X)) -> ok(isQid(X))
                 , isPal(ok(X)) -> ok(isPal(X))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  proper(nil()) -> ok(nil())
                 , proper(tt()) -> ok(tt())
                 , proper(a()) -> ok(a())
                 , proper(e()) -> ok(e())
                 , proper(i()) -> ok(i())
                 , proper(o()) -> ok(o())
                 , proper(u()) -> ok(u())
                 , proper^#(isNeList(X)) -> c_30(isNeList^#(proper(X)))
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , isNeList^#(ok(X)) -> c_42(isNeList^#(X))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                   , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(isList(X)) -> isList(proper(X))
                   , proper(isNeList(X)) -> isNeList(proper(X))
                   , proper(isQid(X)) -> isQid(proper(X))
                   , proper(isNePal(X)) -> isNePal(proper(X))
                   , proper(isPal(X)) -> isPal(proper(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , isList(ok(X)) -> ok(isList(X))
                   , isNeList(ok(X)) -> ok(isNeList(X))
                   , isQid(ok(X)) -> ok(isQid(X))
                   , isPal(ok(X)) -> ok(isPal(X))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  proper(nil()) -> ok(nil())
                   , proper(tt()) -> ok(tt())
                   , proper(a()) -> ok(a())
                   , proper(e()) -> ok(e())
                   , proper(i()) -> ok(i())
                   , proper(o()) -> ok(o())
                   , proper(u()) -> ok(u())
                   , proper^#(isNeList(X)) -> c_30(isNeList^#(proper(X)))
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , isNeList^#(ok(X)) -> c_42(isNeList^#(X))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(4) -> 3
                 , mark_0(6) -> 3
                 , mark_0(12) -> 3
                 , mark_0(13) -> 3
                 , mark_0(14) -> 3
                 , mark_0(15) -> 3
                 , mark_0(16) -> 3
                 , mark_0(18) -> 3
                 , nil_0() -> 4
                 , tt_0() -> 6
                 , a_0() -> 12
                 , e_0() -> 13
                 , i_0() -> 14
                 , o_0() -> 15
                 , u_0() -> 16
                 , ok_0(3) -> 18
                 , ok_0(4) -> 18
                 , ok_0(6) -> 18
                 , ok_0(12) -> 18
                 , ok_0(13) -> 18
                 , ok_0(14) -> 18
                 , ok_0(15) -> 18
                 , ok_0(16) -> 18
                 , ok_0(18) -> 18
                 , isNeList^#_0(3) -> 27
                 , isNeList^#_0(4) -> 27
                 , isNeList^#_0(6) -> 27
                 , isNeList^#_0(12) -> 27
                 , isNeList^#_0(13) -> 27
                 , isNeList^#_0(14) -> 27
                 , isNeList^#_0(15) -> 27
                 , isNeList^#_0(16) -> 27
                 , isNeList^#_0(18) -> 27
                 , proper^#_0(3) -> 51
                 , proper^#_0(4) -> 51
                 , proper^#_0(6) -> 51
                 , proper^#_0(12) -> 51
                 , proper^#_0(13) -> 51
                 , proper^#_0(14) -> 51
                 , proper^#_0(15) -> 51
                 , proper^#_0(16) -> 51
                 , proper^#_0(18) -> 51
                 , c_42_0(27) -> 27}
      
   19)
      {proper^#(isNeList(X)) -> c_30(isNeList^#(proper(X)))}
      
      The usable rules for this path are the following:
      {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
       , proper(nil()) -> ok(nil())
       , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(isList(X)) -> isList(proper(X))
       , proper(isNeList(X)) -> isNeList(proper(X))
       , proper(isQid(X)) -> isQid(proper(X))
       , proper(isNePal(X)) -> isNePal(proper(X))
       , proper(isPal(X)) -> isPal(proper(X))
       , proper(a()) -> ok(a())
       , proper(e()) -> ok(e())
       , proper(i()) -> ok(i())
       , proper(o()) -> ok(o())
       , proper(u()) -> ok(u())
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , isList(ok(X)) -> ok(isList(X))
       , isNeList(ok(X)) -> ok(isNeList(X))
       , isQid(ok(X)) -> ok(isQid(X))
       , isPal(ok(X)) -> ok(isPal(X))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
               , proper(nil()) -> ok(nil())
               , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(isList(X)) -> isList(proper(X))
               , proper(isNeList(X)) -> isNeList(proper(X))
               , proper(isQid(X)) -> isQid(proper(X))
               , proper(isNePal(X)) -> isNePal(proper(X))
               , proper(isPal(X)) -> isPal(proper(X))
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , isList(ok(X)) -> ok(isList(X))
               , isNeList(ok(X)) -> ok(isNeList(X))
               , isQid(ok(X)) -> ok(isQid(X))
               , isPal(ok(X)) -> ok(isPal(X))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , proper^#(isNeList(X)) -> c_30(isNeList^#(proper(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , proper^#(isNeList(X)) -> c_30(isNeList^#(proper(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , proper^#(isNeList(X)) -> c_30(isNeList^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [3]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [8]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [1] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , proper^#(isNeList(X)) -> c_30(isNeList^#(proper(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(nil()) -> ok(nil())
               , proper(tt()) -> ok(tt())
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [1] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                 , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(isList(X)) -> isList(proper(X))
                 , proper(isNeList(X)) -> isNeList(proper(X))
                 , proper(isQid(X)) -> isQid(proper(X))
                 , proper(isNePal(X)) -> isNePal(proper(X))
                 , proper(isPal(X)) -> isPal(proper(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , isList(ok(X)) -> ok(isList(X))
                 , isNeList(ok(X)) -> ok(isNeList(X))
                 , isQid(ok(X)) -> ok(isQid(X))
                 , isPal(ok(X)) -> ok(isPal(X))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  proper(nil()) -> ok(nil())
                 , proper(tt()) -> ok(tt())
                 , proper(a()) -> ok(a())
                 , proper(e()) -> ok(e())
                 , proper(i()) -> ok(i())
                 , proper(o()) -> ok(o())
                 , proper(u()) -> ok(u())
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , proper^#(isNeList(X)) -> c_30(isNeList^#(proper(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                   , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(isList(X)) -> isList(proper(X))
                   , proper(isNeList(X)) -> isNeList(proper(X))
                   , proper(isQid(X)) -> isQid(proper(X))
                   , proper(isNePal(X)) -> isNePal(proper(X))
                   , proper(isPal(X)) -> isPal(proper(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , isList(ok(X)) -> ok(isList(X))
                   , isNeList(ok(X)) -> ok(isNeList(X))
                   , isQid(ok(X)) -> ok(isQid(X))
                   , isPal(ok(X)) -> ok(isPal(X))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  proper(nil()) -> ok(nil())
                   , proper(tt()) -> ok(tt())
                   , proper(a()) -> ok(a())
                   , proper(e()) -> ok(e())
                   , proper(i()) -> ok(i())
                   , proper(o()) -> ok(o())
                   , proper(u()) -> ok(u())
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , proper^#(isNeList(X)) -> c_30(isNeList^#(proper(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(4) -> 3
                 , mark_0(6) -> 3
                 , mark_0(12) -> 3
                 , mark_0(13) -> 3
                 , mark_0(14) -> 3
                 , mark_0(15) -> 3
                 , mark_0(16) -> 3
                 , mark_0(18) -> 3
                 , nil_0() -> 4
                 , tt_0() -> 6
                 , a_0() -> 12
                 , e_0() -> 13
                 , i_0() -> 14
                 , o_0() -> 15
                 , u_0() -> 16
                 , ok_0(3) -> 18
                 , ok_0(4) -> 18
                 , ok_0(6) -> 18
                 , ok_0(12) -> 18
                 , ok_0(13) -> 18
                 , ok_0(14) -> 18
                 , ok_0(15) -> 18
                 , ok_0(16) -> 18
                 , ok_0(18) -> 18
                 , isNeList^#_0(3) -> 27
                 , isNeList^#_0(4) -> 27
                 , isNeList^#_0(6) -> 27
                 , isNeList^#_0(12) -> 27
                 , isNeList^#_0(13) -> 27
                 , isNeList^#_0(14) -> 27
                 , isNeList^#_0(15) -> 27
                 , isNeList^#_0(16) -> 27
                 , isNeList^#_0(18) -> 27
                 , proper^#_0(3) -> 51
                 , proper^#_0(4) -> 51
                 , proper^#_0(6) -> 51
                 , proper^#_0(12) -> 51
                 , proper^#_0(13) -> 51
                 , proper^#_0(14) -> 51
                 , proper^#_0(15) -> 51
                 , proper^#_0(16) -> 51
                 , proper^#_0(18) -> 51}
      
   20)
      {proper^#(isQid(X)) -> c_31(isQid^#(proper(X)))}
      
      The usable rules for this path are the following:
      {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
       , proper(nil()) -> ok(nil())
       , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(isList(X)) -> isList(proper(X))
       , proper(isNeList(X)) -> isNeList(proper(X))
       , proper(isQid(X)) -> isQid(proper(X))
       , proper(isNePal(X)) -> isNePal(proper(X))
       , proper(isPal(X)) -> isPal(proper(X))
       , proper(a()) -> ok(a())
       , proper(e()) -> ok(e())
       , proper(i()) -> ok(i())
       , proper(o()) -> ok(o())
       , proper(u()) -> ok(u())
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , isList(ok(X)) -> ok(isList(X))
       , isNeList(ok(X)) -> ok(isNeList(X))
       , isQid(ok(X)) -> ok(isQid(X))
       , isPal(ok(X)) -> ok(isPal(X))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
               , proper(nil()) -> ok(nil())
               , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(isList(X)) -> isList(proper(X))
               , proper(isNeList(X)) -> isNeList(proper(X))
               , proper(isQid(X)) -> isQid(proper(X))
               , proper(isNePal(X)) -> isNePal(proper(X))
               , proper(isPal(X)) -> isPal(proper(X))
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , isList(ok(X)) -> ok(isList(X))
               , isNeList(ok(X)) -> ok(isNeList(X))
               , isQid(ok(X)) -> ok(isQid(X))
               , isPal(ok(X)) -> ok(isPal(X))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , proper^#(isQid(X)) -> c_31(isQid^#(proper(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , proper^#(isQid(X)) -> c_31(isQid^#(proper(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , proper^#(isQid(X)) -> c_31(isQid^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [3]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [8]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [1] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , proper^#(isQid(X)) -> c_31(isQid^#(proper(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(nil()) -> ok(nil())
               , proper(tt()) -> ok(tt())
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [15]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [5]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [1] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                 , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(isList(X)) -> isList(proper(X))
                 , proper(isNeList(X)) -> isNeList(proper(X))
                 , proper(isQid(X)) -> isQid(proper(X))
                 , proper(isNePal(X)) -> isNePal(proper(X))
                 , proper(isPal(X)) -> isPal(proper(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , isList(ok(X)) -> ok(isList(X))
                 , isNeList(ok(X)) -> ok(isNeList(X))
                 , isQid(ok(X)) -> ok(isQid(X))
                 , isPal(ok(X)) -> ok(isPal(X))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  proper(nil()) -> ok(nil())
                 , proper(tt()) -> ok(tt())
                 , proper(a()) -> ok(a())
                 , proper(e()) -> ok(e())
                 , proper(i()) -> ok(i())
                 , proper(o()) -> ok(o())
                 , proper(u()) -> ok(u())
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , proper^#(isQid(X)) -> c_31(isQid^#(proper(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                   , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(isList(X)) -> isList(proper(X))
                   , proper(isNeList(X)) -> isNeList(proper(X))
                   , proper(isQid(X)) -> isQid(proper(X))
                   , proper(isNePal(X)) -> isNePal(proper(X))
                   , proper(isPal(X)) -> isPal(proper(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , isList(ok(X)) -> ok(isList(X))
                   , isNeList(ok(X)) -> ok(isNeList(X))
                   , isQid(ok(X)) -> ok(isQid(X))
                   , isPal(ok(X)) -> ok(isPal(X))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  proper(nil()) -> ok(nil())
                   , proper(tt()) -> ok(tt())
                   , proper(a()) -> ok(a())
                   , proper(e()) -> ok(e())
                   , proper(i()) -> ok(i())
                   , proper(o()) -> ok(o())
                   , proper(u()) -> ok(u())
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , proper^#(isQid(X)) -> c_31(isQid^#(proper(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(4) -> 3
                 , mark_0(6) -> 3
                 , mark_0(12) -> 3
                 , mark_0(13) -> 3
                 , mark_0(14) -> 3
                 , mark_0(15) -> 3
                 , mark_0(16) -> 3
                 , mark_0(18) -> 3
                 , nil_0() -> 4
                 , tt_0() -> 6
                 , a_0() -> 12
                 , e_0() -> 13
                 , i_0() -> 14
                 , o_0() -> 15
                 , u_0() -> 16
                 , ok_0(3) -> 18
                 , ok_0(4) -> 18
                 , ok_0(6) -> 18
                 , ok_0(12) -> 18
                 , ok_0(13) -> 18
                 , ok_0(14) -> 18
                 , ok_0(15) -> 18
                 , ok_0(16) -> 18
                 , ok_0(18) -> 18
                 , isQid^#_0(3) -> 32
                 , isQid^#_0(4) -> 32
                 , isQid^#_0(6) -> 32
                 , isQid^#_0(12) -> 32
                 , isQid^#_0(13) -> 32
                 , isQid^#_0(14) -> 32
                 , isQid^#_0(15) -> 32
                 , isQid^#_0(16) -> 32
                 , isQid^#_0(18) -> 32
                 , proper^#_0(3) -> 51
                 , proper^#_0(4) -> 51
                 , proper^#_0(6) -> 51
                 , proper^#_0(12) -> 51
                 , proper^#_0(13) -> 51
                 , proper^#_0(14) -> 51
                 , proper^#_0(15) -> 51
                 , proper^#_0(16) -> 51
                 , proper^#_0(18) -> 51}
      
   21)
      {proper^#(isNePal(X)) -> c_32(isNePal^#(proper(X)))}
      
      The usable rules for this path are the following:
      {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
       , proper(nil()) -> ok(nil())
       , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(isList(X)) -> isList(proper(X))
       , proper(isNeList(X)) -> isNeList(proper(X))
       , proper(isQid(X)) -> isQid(proper(X))
       , proper(isNePal(X)) -> isNePal(proper(X))
       , proper(isPal(X)) -> isPal(proper(X))
       , proper(a()) -> ok(a())
       , proper(e()) -> ok(e())
       , proper(i()) -> ok(i())
       , proper(o()) -> ok(o())
       , proper(u()) -> ok(u())
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , isList(ok(X)) -> ok(isList(X))
       , isNeList(ok(X)) -> ok(isNeList(X))
       , isQid(ok(X)) -> ok(isQid(X))
       , isPal(ok(X)) -> ok(isPal(X))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
               , proper(nil()) -> ok(nil())
               , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(isList(X)) -> isList(proper(X))
               , proper(isNeList(X)) -> isNeList(proper(X))
               , proper(isQid(X)) -> isQid(proper(X))
               , proper(isNePal(X)) -> isNePal(proper(X))
               , proper(isPal(X)) -> isPal(proper(X))
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , isList(ok(X)) -> ok(isList(X))
               , isNeList(ok(X)) -> ok(isNeList(X))
               , isQid(ok(X)) -> ok(isQid(X))
               , isPal(ok(X)) -> ok(isPal(X))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , proper^#(isNePal(X)) -> c_32(isNePal^#(proper(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , proper^#(isNePal(X)) -> c_32(isNePal^#(proper(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , proper^#(isNePal(X)) -> c_32(isNePal^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [3]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [8]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [1] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [1] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , proper(a()) -> ok(a())
             , proper(e()) -> ok(e())
             , proper(i()) -> ok(i())
             , proper(o()) -> ok(o())
             , proper(u()) -> ok(u())}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , proper^#(isNePal(X)) -> c_32(isNePal^#(proper(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(nil()) -> ok(nil())
               , proper(tt()) -> ok(tt())
               , proper(a()) -> ok(a())
               , proper(e()) -> ok(e())
               , proper(i()) -> ok(i())
               , proper(o()) -> ok(o())
               , proper(u()) -> ok(u())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [5]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [1] x1 + [15]
                  isQid(x1) = [1] x1 + [12]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [5]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [1] x1 + [4]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [1] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                 , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(isList(X)) -> isList(proper(X))
                 , proper(isNeList(X)) -> isNeList(proper(X))
                 , proper(isQid(X)) -> isQid(proper(X))
                 , proper(isNePal(X)) -> isNePal(proper(X))
                 , proper(isPal(X)) -> isPal(proper(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , isList(ok(X)) -> ok(isList(X))
                 , isNeList(ok(X)) -> ok(isNeList(X))
                 , isQid(ok(X)) -> ok(isQid(X))
                 , isPal(ok(X)) -> ok(isPal(X))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  proper(nil()) -> ok(nil())
                 , proper(tt()) -> ok(tt())
                 , proper(a()) -> ok(a())
                 , proper(e()) -> ok(e())
                 , proper(i()) -> ok(i())
                 , proper(o()) -> ok(o())
                 , proper(u()) -> ok(u())
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , proper^#(isNePal(X)) -> c_32(isNePal^#(proper(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                   , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(isList(X)) -> isList(proper(X))
                   , proper(isNeList(X)) -> isNeList(proper(X))
                   , proper(isQid(X)) -> isQid(proper(X))
                   , proper(isNePal(X)) -> isNePal(proper(X))
                   , proper(isPal(X)) -> isPal(proper(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , isList(ok(X)) -> ok(isList(X))
                   , isNeList(ok(X)) -> ok(isNeList(X))
                   , isQid(ok(X)) -> ok(isQid(X))
                   , isPal(ok(X)) -> ok(isPal(X))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  proper(nil()) -> ok(nil())
                   , proper(tt()) -> ok(tt())
                   , proper(a()) -> ok(a())
                   , proper(e()) -> ok(e())
                   , proper(i()) -> ok(i())
                   , proper(o()) -> ok(o())
                   , proper(u()) -> ok(u())
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , proper^#(isNePal(X)) -> c_32(isNePal^#(proper(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(4) -> 3
                 , mark_0(6) -> 3
                 , mark_0(12) -> 3
                 , mark_0(13) -> 3
                 , mark_0(14) -> 3
                 , mark_0(15) -> 3
                 , mark_0(16) -> 3
                 , mark_0(18) -> 3
                 , nil_0() -> 4
                 , tt_0() -> 6
                 , a_0() -> 12
                 , e_0() -> 13
                 , i_0() -> 14
                 , o_0() -> 15
                 , u_0() -> 16
                 , ok_0(3) -> 18
                 , ok_0(4) -> 18
                 , ok_0(6) -> 18
                 , ok_0(12) -> 18
                 , ok_0(13) -> 18
                 , ok_0(14) -> 18
                 , ok_0(15) -> 18
                 , ok_0(16) -> 18
                 , ok_0(18) -> 18
                 , isNePal^#_0(3) -> 38
                 , isNePal^#_0(4) -> 38
                 , isNePal^#_0(6) -> 38
                 , isNePal^#_0(12) -> 38
                 , isNePal^#_0(13) -> 38
                 , isNePal^#_0(14) -> 38
                 , isNePal^#_0(15) -> 38
                 , isNePal^#_0(16) -> 38
                 , isNePal^#_0(18) -> 38
                 , proper^#_0(3) -> 51
                 , proper^#_0(4) -> 51
                 , proper^#_0(6) -> 51
                 , proper^#_0(12) -> 51
                 , proper^#_0(13) -> 51
                 , proper^#_0(14) -> 51
                 , proper^#_0(15) -> 51
                 , proper^#_0(16) -> 51
                 , proper^#_0(18) -> 51}
      
   22)
      {  active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))
       , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))
       , __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
       , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))}
      
      The usable rules for this path are the following:
      {  __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))
               , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))
               , __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
               , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [1]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [1] x1 + [1]
                  c_23(x1) = [1] x1 + [1]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [1] x1 + [1]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))}
            and weakly orienting the rules
            {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [1]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [2]
                  c_0(x1) = [1] x1 + [2]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [1] x1 + [0]
                  c_23(x1) = [1] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [1] x1 + [1]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))
             , active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
               , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [1]
                  mark(x1) = [1] x1 + [8]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [3]
                  c_0(x1) = [1] x1 + [4]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [1] x1 + [1]
                  c_23(x1) = [1] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [1] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))}
              Weak Rules:
                {  __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
                 , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))
                 , active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))}
                Weak Rules:
                  {  __^#(X1, mark(X2)) -> c_23(__^#(X1, X2))
                   , __^#(mark(X1), X2) -> c_22(__^#(X1, X2))
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , __^#(ok(X1), ok(X2)) -> c_39(__^#(X1, X2))
                   , active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(18) -> 3
                 , ok_0(3) -> 18
                 , ok_0(18) -> 18
                 , active^#_0(3) -> 20
                 , active^#_0(18) -> 20
                 , __^#_0(3, 3) -> 22
                 , __^#_0(3, 18) -> 22
                 , __^#_0(18, 3) -> 22
                 , __^#_0(18, 18) -> 22
                 , c_22_0(22) -> 22
                 , c_23_0(22) -> 22
                 , c_39_0(22) -> 22}
      
   23)
      {  active^#(isNePal(__(I, __(P, I)))) ->
         c_11(and^#(isQid(I), isPal(P)))
       , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
       , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
      
      The usable rules for this path are the following:
      {  isQid(ok(X)) -> ok(isQid(X))
       , isPal(ok(X)) -> ok(isPal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  isQid(ok(X)) -> ok(isQid(X))
               , isPal(ok(X)) -> ok(isPal(X))
               , active^#(isNePal(__(I, __(P, I)))) ->
                 c_11(and^#(isQid(I), isPal(P)))
               , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
               , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [8]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [1] x1 + [1]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [1]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [1] x1 + [1]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [1] x1 + [1]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(isNePal(__(I, __(P, I)))) ->
             c_11(and^#(isQid(I), isPal(P)))}
            and weakly orienting the rules
            {and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(isNePal(__(I, __(P, I)))) ->
               c_11(and^#(isQid(I), isPal(P)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [5]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [1] x1 + [1]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [1] x1 + [1]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [11]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [8]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [1] x1 + [10]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
            and weakly orienting the rules
            {  active^#(isNePal(__(I, __(P, I)))) ->
               c_11(and^#(isQid(I), isPal(P)))
             , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [4]
                  mark(x1) = [1] x1 + [4]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [1] x1 + [12]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [12]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [1] x1 + [3]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [1] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  isQid(ok(X)) -> ok(isQid(X))
                 , isPal(ok(X)) -> ok(isPal(X))}
              Weak Rules:
                {  and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
                 , active^#(isNePal(__(I, __(P, I)))) ->
                   c_11(and^#(isQid(I), isPal(P)))
                 , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  isQid(ok(X)) -> ok(isQid(X))
                   , isPal(ok(X)) -> ok(isPal(X))}
                Weak Rules:
                  {  and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
                   , active^#(isNePal(__(I, __(P, I)))) ->
                     c_11(and^#(isQid(I), isPal(P)))
                   , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(18) -> 3
                 , ok_0(3) -> 18
                 , ok_0(18) -> 18
                 , active^#_0(3) -> 20
                 , active^#_0(18) -> 20
                 , and^#_0(3, 3) -> 30
                 , and^#_0(3, 18) -> 30
                 , and^#_0(18, 3) -> 30
                 , and^#_0(18, 18) -> 30
                 , c_24_0(30) -> 30
                 , c_40_0(30) -> 30}
      
   24)
      {  active^#(isNeList(__(V1, V2))) ->
         c_9(and^#(isNeList(V1), isList(V2)))
       , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
       , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
      
      The usable rules for this path are the following:
      {  isList(ok(X)) -> ok(isList(X))
       , isNeList(ok(X)) -> ok(isNeList(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  isList(ok(X)) -> ok(isList(X))
               , isNeList(ok(X)) -> ok(isNeList(X))
               , active^#(isNeList(__(V1, V2))) ->
                 c_9(and^#(isNeList(V1), isList(V2)))
               , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
               , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [8]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [1]
                  isNeList(x1) = [1] x1 + [1]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [1] x1 + [3]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [1] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(isNeList(__(V1, V2))) ->
             c_9(and^#(isNeList(V1), isList(V2)))}
            and weakly orienting the rules
            {and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(isNeList(__(V1, V2))) ->
               c_9(and^#(isNeList(V1), isList(V2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [9]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [1]
                  isNeList(x1) = [1] x1 + [1]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [1] x1 + [4]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
            and weakly orienting the rules
            {  active^#(isNeList(__(V1, V2))) ->
               c_9(and^#(isNeList(V1), isList(V2)))
             , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [11]
                  mark(x1) = [1] x1 + [10]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [7]
                  isNeList(x1) = [1] x1 + [5]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [10]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [4]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [1] x1 + [10]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [1] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  isList(ok(X)) -> ok(isList(X))
                 , isNeList(ok(X)) -> ok(isNeList(X))}
              Weak Rules:
                {  and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
                 , active^#(isNeList(__(V1, V2))) ->
                   c_9(and^#(isNeList(V1), isList(V2)))
                 , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  isList(ok(X)) -> ok(isList(X))
                   , isNeList(ok(X)) -> ok(isNeList(X))}
                Weak Rules:
                  {  and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
                   , active^#(isNeList(__(V1, V2))) ->
                     c_9(and^#(isNeList(V1), isList(V2)))
                   , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(18) -> 3
                 , ok_0(3) -> 18
                 , ok_0(18) -> 18
                 , active^#_0(3) -> 20
                 , active^#_0(18) -> 20
                 , and^#_0(3, 3) -> 30
                 , and^#_0(3, 18) -> 30
                 , and^#_0(18, 3) -> 30
                 , and^#_0(18, 18) -> 30
                 , c_24_0(30) -> 30
                 , c_40_0(30) -> 30}
      
   25)
      {  active^#(isNeList(__(V1, V2))) ->
         c_8(and^#(isList(V1), isNeList(V2)))
       , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
       , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
      
      The usable rules for this path are the following:
      {  isList(ok(X)) -> ok(isList(X))
       , isNeList(ok(X)) -> ok(isNeList(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  isList(ok(X)) -> ok(isList(X))
               , isNeList(ok(X)) -> ok(isNeList(X))
               , active^#(isNeList(__(V1, V2))) ->
                 c_8(and^#(isList(V1), isNeList(V2)))
               , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
               , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [8]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [1]
                  isNeList(x1) = [1] x1 + [1]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [1] x1 + [3]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [1] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(isNeList(__(V1, V2))) ->
             c_8(and^#(isList(V1), isNeList(V2)))}
            and weakly orienting the rules
            {and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(isNeList(__(V1, V2))) ->
               c_8(and^#(isList(V1), isNeList(V2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [9]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [1]
                  isNeList(x1) = [1] x1 + [1]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [1] x1 + [4]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
            and weakly orienting the rules
            {  active^#(isNeList(__(V1, V2))) ->
               c_8(and^#(isList(V1), isNeList(V2)))
             , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [14]
                  mark(x1) = [1] x1 + [8]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [7]
                  isNeList(x1) = [1] x1 + [3]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [10]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [4]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [1] x1 + [8]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [1] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  isList(ok(X)) -> ok(isList(X))
                 , isNeList(ok(X)) -> ok(isNeList(X))}
              Weak Rules:
                {  and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
                 , active^#(isNeList(__(V1, V2))) ->
                   c_8(and^#(isList(V1), isNeList(V2)))
                 , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  isList(ok(X)) -> ok(isList(X))
                   , isNeList(ok(X)) -> ok(isNeList(X))}
                Weak Rules:
                  {  and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
                   , active^#(isNeList(__(V1, V2))) ->
                     c_8(and^#(isList(V1), isNeList(V2)))
                   , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(18) -> 3
                 , ok_0(3) -> 18
                 , ok_0(18) -> 18
                 , active^#_0(3) -> 20
                 , active^#_0(18) -> 20
                 , and^#_0(3, 3) -> 30
                 , and^#_0(3, 18) -> 30
                 , and^#_0(18, 3) -> 30
                 , and^#_0(18, 18) -> 30
                 , c_24_0(30) -> 30
                 , c_40_0(30) -> 30}
      
   26)
      {  active^#(isList(__(V1, V2))) ->
         c_6(and^#(isList(V1), isList(V2)))
       , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
       , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
      
      The usable rules for this path are the following:
      {isList(ok(X)) -> ok(isList(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  isList(ok(X)) -> ok(isList(X))
               , active^#(isList(__(V1, V2))) ->
                 c_6(and^#(isList(V1), isList(V2)))
               , and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
               , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [8]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [1]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [1] x1 + [1]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [1] x1 + [1]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(isList(__(V1, V2))) ->
             c_6(and^#(isList(V1), isList(V2)))}
            and weakly orienting the rules
            {and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(isList(__(V1, V2))) ->
               c_6(and^#(isList(V1), isList(V2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [1]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [2]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [1] x1 + [1]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [1] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
            and weakly orienting the rules
            {  active^#(isList(__(V1, V2))) ->
               c_6(and^#(isList(V1), isList(V2)))
             , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [1]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [3]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [1] x1 + [9]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {isList(ok(X)) -> ok(isList(X))}
              Weak Rules:
                {  and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
                 , active^#(isList(__(V1, V2))) ->
                   c_6(and^#(isList(V1), isList(V2)))
                 , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {isList(ok(X)) -> ok(isList(X))}
                Weak Rules:
                  {  and^#(ok(X1), ok(X2)) -> c_40(and^#(X1, X2))
                   , active^#(isList(__(V1, V2))) ->
                     c_6(and^#(isList(V1), isList(V2)))
                   , and^#(mark(X1), X2) -> c_24(and^#(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(18) -> 3
                 , ok_0(3) -> 18
                 , ok_0(18) -> 18
                 , active^#_0(3) -> 20
                 , active^#_0(18) -> 20
                 , and^#_0(3, 3) -> 30
                 , and^#_0(3, 18) -> 30
                 , and^#_0(18, 3) -> 30
                 , and^#_0(18, 18) -> 30
                 , c_24_0(30) -> 30
                 , c_40_0(30) -> 30}
      
   27)
      {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
      
      The usable rules for this path are the following:
      {  __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [1]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {__(ok(X1), ok(X2)) -> ok(__(X1, X2))}
            and weakly orienting the rules
            {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {__(ok(X1), ok(X2)) -> ok(__(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [1]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))}
              Weak Rules:
                {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))}
                Weak Rules:
                  {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(18) -> 3
                 , ok_0(3) -> 18
                 , ok_0(18) -> 18
                 , active^#_0(3) -> 20
                 , active^#_0(18) -> 20
                 , __^#_0(3, 3) -> 22
                 , __^#_0(3, 18) -> 22
                 , __^#_0(18, 3) -> 22
                 , __^#_0(18, 18) -> 22}
      
   28)
      {active^#(isNePal(__(I, __(P, I)))) ->
       c_11(and^#(isQid(I), isPal(P)))}
      
      The usable rules for this path are the following:
      {  isQid(ok(X)) -> ok(isQid(X))
       , isPal(ok(X)) -> ok(isPal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  isQid(ok(X)) -> ok(isQid(X))
               , isPal(ok(X)) -> ok(isPal(X))
               , active^#(isNePal(__(I, __(P, I)))) ->
                 c_11(and^#(isQid(I), isPal(P)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(isNePal(__(I, __(P, I)))) ->
             c_11(and^#(isQid(I), isPal(P)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(isNePal(__(I, __(P, I)))) ->
               c_11(and^#(isQid(I), isPal(P)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [1] x1 + [1]
                  isNePal(x1) = [1] x1 + [4]
                  isPal(x1) = [1] x1 + [1]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  isQid(ok(X)) -> ok(isQid(X))
                 , isPal(ok(X)) -> ok(isPal(X))}
              Weak Rules:
                {active^#(isNePal(__(I, __(P, I)))) ->
                 c_11(and^#(isQid(I), isPal(P)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  isQid(ok(X)) -> ok(isQid(X))
                   , isPal(ok(X)) -> ok(isPal(X))}
                Weak Rules:
                  {active^#(isNePal(__(I, __(P, I)))) ->
                   c_11(and^#(isQid(I), isPal(P)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  ok_0(18) -> 18
                 , active^#_0(18) -> 20
                 , and^#_0(18, 18) -> 30}
      
   29)
      {active^#(isNeList(__(V1, V2))) ->
       c_8(and^#(isList(V1), isNeList(V2)))}
      
      The usable rules for this path are the following:
      {  isList(ok(X)) -> ok(isList(X))
       , isNeList(ok(X)) -> ok(isNeList(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  isList(ok(X)) -> ok(isList(X))
               , isNeList(ok(X)) -> ok(isNeList(X))
               , active^#(isNeList(__(V1, V2))) ->
                 c_8(and^#(isList(V1), isNeList(V2)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(isNeList(__(V1, V2))) ->
             c_8(and^#(isList(V1), isNeList(V2)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(isNeList(__(V1, V2))) ->
               c_8(and^#(isList(V1), isNeList(V2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [1]
                  isNeList(x1) = [1] x1 + [1]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [2]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  isList(ok(X)) -> ok(isList(X))
                 , isNeList(ok(X)) -> ok(isNeList(X))}
              Weak Rules:
                {active^#(isNeList(__(V1, V2))) ->
                 c_8(and^#(isList(V1), isNeList(V2)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  isList(ok(X)) -> ok(isList(X))
                   , isNeList(ok(X)) -> ok(isNeList(X))}
                Weak Rules:
                  {active^#(isNeList(__(V1, V2))) ->
                   c_8(and^#(isList(V1), isNeList(V2)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  ok_0(18) -> 18
                 , active^#_0(18) -> 20
                 , and^#_0(18, 18) -> 30}
      
   30)
      {active^#(isNeList(__(V1, V2))) ->
       c_9(and^#(isNeList(V1), isList(V2)))}
      
      The usable rules for this path are the following:
      {  isList(ok(X)) -> ok(isList(X))
       , isNeList(ok(X)) -> ok(isNeList(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  isList(ok(X)) -> ok(isList(X))
               , isNeList(ok(X)) -> ok(isNeList(X))
               , active^#(isNeList(__(V1, V2))) ->
                 c_9(and^#(isNeList(V1), isList(V2)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(isNeList(__(V1, V2))) ->
             c_9(and^#(isNeList(V1), isList(V2)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(isNeList(__(V1, V2))) ->
               c_9(and^#(isNeList(V1), isList(V2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [1]
                  isNeList(x1) = [1] x1 + [1]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [2]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  isList(ok(X)) -> ok(isList(X))
                 , isNeList(ok(X)) -> ok(isNeList(X))}
              Weak Rules:
                {active^#(isNeList(__(V1, V2))) ->
                 c_9(and^#(isNeList(V1), isList(V2)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  isList(ok(X)) -> ok(isList(X))
                   , isNeList(ok(X)) -> ok(isNeList(X))}
                Weak Rules:
                  {active^#(isNeList(__(V1, V2))) ->
                   c_9(and^#(isNeList(V1), isList(V2)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  ok_0(2) -> 2
                 , active^#_0(2) -> 1
                 , and^#_0(2, 2) -> 1}
      
   31)
      {active^#(isList(__(V1, V2))) ->
       c_6(and^#(isList(V1), isList(V2)))}
      
      The usable rules for this path are the following:
      {isList(ok(X)) -> ok(isList(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  isList(ok(X)) -> ok(isList(X))
               , active^#(isList(__(V1, V2))) ->
                 c_6(and^#(isList(V1), isList(V2)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(isList(__(V1, V2))) ->
             c_6(and^#(isList(V1), isList(V2)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(isList(__(V1, V2))) ->
               c_6(and^#(isList(V1), isList(V2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [1]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [4]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {isList(ok(X)) -> ok(isList(X))}
              Weak Rules:
                {active^#(isList(__(V1, V2))) ->
                 c_6(and^#(isList(V1), isList(V2)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {isList(ok(X)) -> ok(isList(X))}
                Weak Rules:
                  {active^#(isList(__(V1, V2))) ->
                   c_6(and^#(isList(V1), isList(V2)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  ok_0(2) -> 2
                 , active^#_0(2) -> 1
                 , and^#_0(2, 2) -> 1}
      
   32)
      {  active^#(isList(V)) -> c_4(isNeList^#(V))
       , isNeList^#(ok(X)) -> c_42(isNeList^#(X))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isList(x1) = [0] x1 + [0]
           isNeList(x1) = [0] x1 + [0]
           isQid(x1) = [0] x1 + [0]
           isNePal(x1) = [0] x1 + [0]
           isPal(x1) = [0] x1 + [0]
           a() = [0]
           e() = [0]
           i() = [0]
           o() = [0]
           u() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           isNeList^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_7(x1) = [0] x1 + [0]
           isQid^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_13() = [0]
           c_14() = [0]
           c_15() = [0]
           c_16() = [0]
           c_17() = [0]
           c_18() = [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
           c_23(x1) = [0] x1 + [0]
           c_24(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_25(x1) = [0] x1 + [0]
           c_26() = [0]
           c_27(x1) = [0] x1 + [0]
           c_28() = [0]
           c_29(x1) = [0] x1 + [0]
           isList^#(x1) = [0] x1 + [0]
           c_30(x1) = [0] x1 + [0]
           c_31(x1) = [0] x1 + [0]
           c_32(x1) = [0] x1 + [0]
           c_33(x1) = [0] x1 + [0]
           isPal^#(x1) = [0] x1 + [0]
           c_34() = [0]
           c_35() = [0]
           c_36() = [0]
           c_37() = [0]
           c_38() = [0]
           c_39(x1) = [0] x1 + [0]
           c_40(x1) = [0] x1 + [0]
           c_41(x1) = [0] x1 + [0]
           c_42(x1) = [0] x1 + [0]
           c_43(x1) = [0] x1 + [0]
           c_44(x1) = [0] x1 + [0]
           c_45(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_46(x1) = [0] x1 + [0]
           c_47(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {isNeList^#(ok(X)) -> c_42(isNeList^#(X))}
            Weak Rules: {active^#(isList(V)) -> c_4(isNeList^#(V))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {isNeList^#(ok(X)) -> c_42(isNeList^#(X))}
            and weakly orienting the rules
            {active^#(isList(V)) -> c_4(isNeList^#(V))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {isNeList^#(ok(X)) -> c_42(isNeList^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [0] x1 + [0] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [1]
                  isNeList^#(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [1] x1 + [3]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  isNeList^#(ok(X)) -> c_42(isNeList^#(X))
                 , active^#(isList(V)) -> c_4(isNeList^#(V))}
            
            Details:         
              The given problem does not contain any strict rules
      
   33)
      {active^#(__(X, nil())) -> c_1()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isList(x1) = [0] x1 + [0]
           isNeList(x1) = [0] x1 + [0]
           isQid(x1) = [0] x1 + [0]
           isNePal(x1) = [0] x1 + [0]
           isPal(x1) = [0] x1 + [0]
           a() = [0]
           e() = [0]
           i() = [0]
           o() = [0]
           u() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           isNeList^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_7(x1) = [0] x1 + [0]
           isQid^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_13() = [0]
           c_14() = [0]
           c_15() = [0]
           c_16() = [0]
           c_17() = [0]
           c_18() = [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
           c_23(x1) = [0] x1 + [0]
           c_24(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_25(x1) = [0] x1 + [0]
           c_26() = [0]
           c_27(x1) = [0] x1 + [0]
           c_28() = [0]
           c_29(x1) = [0] x1 + [0]
           isList^#(x1) = [0] x1 + [0]
           c_30(x1) = [0] x1 + [0]
           c_31(x1) = [0] x1 + [0]
           c_32(x1) = [0] x1 + [0]
           c_33(x1) = [0] x1 + [0]
           isPal^#(x1) = [0] x1 + [0]
           c_34() = [0]
           c_35() = [0]
           c_36() = [0]
           c_37() = [0]
           c_38() = [0]
           c_39(x1) = [0] x1 + [0]
           c_40(x1) = [0] x1 + [0]
           c_41(x1) = [0] x1 + [0]
           c_42(x1) = [0] x1 + [0]
           c_43(x1) = [0] x1 + [0]
           c_44(x1) = [0] x1 + [0]
           c_45(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_46(x1) = [0] x1 + [0]
           c_47(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(__(X, nil())) -> c_1()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(__(X, nil())) -> c_1()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(__(X, nil())) -> c_1()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(__(X, nil())) -> c_1()}
            
            Details:         
              The given problem does not contain any strict rules
      
   34)
      {  active^#(isNeList(V)) -> c_7(isQid^#(V))
       , isQid^#(ok(X)) -> c_43(isQid^#(X))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isList(x1) = [0] x1 + [0]
           isNeList(x1) = [0] x1 + [0]
           isQid(x1) = [0] x1 + [0]
           isNePal(x1) = [0] x1 + [0]
           isPal(x1) = [0] x1 + [0]
           a() = [0]
           e() = [0]
           i() = [0]
           o() = [0]
           u() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           isNeList^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_7(x1) = [0] x1 + [0]
           isQid^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_13() = [0]
           c_14() = [0]
           c_15() = [0]
           c_16() = [0]
           c_17() = [0]
           c_18() = [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
           c_23(x1) = [0] x1 + [0]
           c_24(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_25(x1) = [0] x1 + [0]
           c_26() = [0]
           c_27(x1) = [0] x1 + [0]
           c_28() = [0]
           c_29(x1) = [0] x1 + [0]
           isList^#(x1) = [0] x1 + [0]
           c_30(x1) = [0] x1 + [0]
           c_31(x1) = [0] x1 + [0]
           c_32(x1) = [0] x1 + [0]
           c_33(x1) = [0] x1 + [0]
           isPal^#(x1) = [0] x1 + [0]
           c_34() = [0]
           c_35() = [0]
           c_36() = [0]
           c_37() = [0]
           c_38() = [0]
           c_39(x1) = [0] x1 + [0]
           c_40(x1) = [0] x1 + [0]
           c_41(x1) = [0] x1 + [0]
           c_42(x1) = [0] x1 + [0]
           c_43(x1) = [0] x1 + [0]
           c_44(x1) = [0] x1 + [0]
           c_45(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_46(x1) = [0] x1 + [0]
           c_47(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {isQid^#(ok(X)) -> c_43(isQid^#(X))}
            Weak Rules: {active^#(isNeList(V)) -> c_7(isQid^#(V))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {isQid^#(ok(X)) -> c_43(isQid^#(X))}
            and weakly orienting the rules
            {active^#(isNeList(V)) -> c_7(isQid^#(V))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {isQid^#(ok(X)) -> c_43(isQid^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [0] x1 + [0] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [1] x1 + [1]
                  isQid^#(x1) = [1] x1 + [1]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [1] x1 + [3]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  isQid^#(ok(X)) -> c_43(isQid^#(X))
                 , active^#(isNeList(V)) -> c_7(isQid^#(V))}
            
            Details:         
              The given problem does not contain any strict rules
      
   35)
      {active^#(__(nil(), X)) -> c_2()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isList(x1) = [0] x1 + [0]
           isNeList(x1) = [0] x1 + [0]
           isQid(x1) = [0] x1 + [0]
           isNePal(x1) = [0] x1 + [0]
           isPal(x1) = [0] x1 + [0]
           a() = [0]
           e() = [0]
           i() = [0]
           o() = [0]
           u() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           isNeList^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_7(x1) = [0] x1 + [0]
           isQid^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_13() = [0]
           c_14() = [0]
           c_15() = [0]
           c_16() = [0]
           c_17() = [0]
           c_18() = [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
           c_23(x1) = [0] x1 + [0]
           c_24(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_25(x1) = [0] x1 + [0]
           c_26() = [0]
           c_27(x1) = [0] x1 + [0]
           c_28() = [0]
           c_29(x1) = [0] x1 + [0]
           isList^#(x1) = [0] x1 + [0]
           c_30(x1) = [0] x1 + [0]
           c_31(x1) = [0] x1 + [0]
           c_32(x1) = [0] x1 + [0]
           c_33(x1) = [0] x1 + [0]
           isPal^#(x1) = [0] x1 + [0]
           c_34() = [0]
           c_35() = [0]
           c_36() = [0]
           c_37() = [0]
           c_38() = [0]
           c_39(x1) = [0] x1 + [0]
           c_40(x1) = [0] x1 + [0]
           c_41(x1) = [0] x1 + [0]
           c_42(x1) = [0] x1 + [0]
           c_43(x1) = [0] x1 + [0]
           c_44(x1) = [0] x1 + [0]
           c_45(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_46(x1) = [0] x1 + [0]
           c_47(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(__(nil(), X)) -> c_2()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(__(nil(), X)) -> c_2()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(__(nil(), X)) -> c_2()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(__(nil(), X)) -> c_2()}
            
            Details:         
              The given problem does not contain any strict rules
      
   36)
      {  active^#(isPal(V)) -> c_12(isNePal^#(V))
       , isNePal^#(ok(X)) -> c_44(isNePal^#(X))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isList(x1) = [0] x1 + [0]
           isNeList(x1) = [0] x1 + [0]
           isQid(x1) = [0] x1 + [0]
           isNePal(x1) = [0] x1 + [0]
           isPal(x1) = [0] x1 + [0]
           a() = [0]
           e() = [0]
           i() = [0]
           o() = [0]
           u() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           isNeList^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_7(x1) = [0] x1 + [0]
           isQid^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_13() = [0]
           c_14() = [0]
           c_15() = [0]
           c_16() = [0]
           c_17() = [0]
           c_18() = [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
           c_23(x1) = [0] x1 + [0]
           c_24(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_25(x1) = [0] x1 + [0]
           c_26() = [0]
           c_27(x1) = [0] x1 + [0]
           c_28() = [0]
           c_29(x1) = [0] x1 + [0]
           isList^#(x1) = [0] x1 + [0]
           c_30(x1) = [0] x1 + [0]
           c_31(x1) = [0] x1 + [0]
           c_32(x1) = [0] x1 + [0]
           c_33(x1) = [0] x1 + [0]
           isPal^#(x1) = [0] x1 + [0]
           c_34() = [0]
           c_35() = [0]
           c_36() = [0]
           c_37() = [0]
           c_38() = [0]
           c_39(x1) = [0] x1 + [0]
           c_40(x1) = [0] x1 + [0]
           c_41(x1) = [0] x1 + [0]
           c_42(x1) = [0] x1 + [0]
           c_43(x1) = [0] x1 + [0]
           c_44(x1) = [0] x1 + [0]
           c_45(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_46(x1) = [0] x1 + [0]
           c_47(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {isNePal^#(ok(X)) -> c_44(isNePal^#(X))}
            Weak Rules: {active^#(isPal(V)) -> c_12(isNePal^#(V))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {isNePal^#(ok(X)) -> c_44(isNePal^#(X))}
            and weakly orienting the rules
            {active^#(isPal(V)) -> c_12(isNePal^#(V))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {isNePal^#(ok(X)) -> c_44(isNePal^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [0] x1 + [0] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  isNePal^#(x1) = [1] x1 + [1]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [1] x1 + [3]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  isNePal^#(ok(X)) -> c_44(isNePal^#(X))
                 , active^#(isPal(V)) -> c_12(isNePal^#(V))}
            
            Details:         
              The given problem does not contain any strict rules
      
   37)
      {active^#(and(tt(), X)) -> c_3()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isList(x1) = [0] x1 + [0]
           isNeList(x1) = [0] x1 + [0]
           isQid(x1) = [0] x1 + [0]
           isNePal(x1) = [0] x1 + [0]
           isPal(x1) = [0] x1 + [0]
           a() = [0]
           e() = [0]
           i() = [0]
           o() = [0]
           u() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           isNeList^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_7(x1) = [0] x1 + [0]
           isQid^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_13() = [0]
           c_14() = [0]
           c_15() = [0]
           c_16() = [0]
           c_17() = [0]
           c_18() = [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
           c_23(x1) = [0] x1 + [0]
           c_24(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_25(x1) = [0] x1 + [0]
           c_26() = [0]
           c_27(x1) = [0] x1 + [0]
           c_28() = [0]
           c_29(x1) = [0] x1 + [0]
           isList^#(x1) = [0] x1 + [0]
           c_30(x1) = [0] x1 + [0]
           c_31(x1) = [0] x1 + [0]
           c_32(x1) = [0] x1 + [0]
           c_33(x1) = [0] x1 + [0]
           isPal^#(x1) = [0] x1 + [0]
           c_34() = [0]
           c_35() = [0]
           c_36() = [0]
           c_37() = [0]
           c_38() = [0]
           c_39(x1) = [0] x1 + [0]
           c_40(x1) = [0] x1 + [0]
           c_41(x1) = [0] x1 + [0]
           c_42(x1) = [0] x1 + [0]
           c_43(x1) = [0] x1 + [0]
           c_44(x1) = [0] x1 + [0]
           c_45(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_46(x1) = [0] x1 + [0]
           c_47(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(and(tt(), X)) -> c_3()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(and(tt(), X)) -> c_3()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(and(tt(), X)) -> c_3()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [0] x1 + [0] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(and(tt(), X)) -> c_3()}
            
            Details:         
              The given problem does not contain any strict rules
      
   38)
      {  active^#(isNePal(V)) -> c_10(isQid^#(V))
       , isQid^#(ok(X)) -> c_43(isQid^#(X))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isList(x1) = [0] x1 + [0]
           isNeList(x1) = [0] x1 + [0]
           isQid(x1) = [0] x1 + [0]
           isNePal(x1) = [0] x1 + [0]
           isPal(x1) = [0] x1 + [0]
           a() = [0]
           e() = [0]
           i() = [0]
           o() = [0]
           u() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           isNeList^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_7(x1) = [0] x1 + [0]
           isQid^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_13() = [0]
           c_14() = [0]
           c_15() = [0]
           c_16() = [0]
           c_17() = [0]
           c_18() = [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
           c_23(x1) = [0] x1 + [0]
           c_24(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_25(x1) = [0] x1 + [0]
           c_26() = [0]
           c_27(x1) = [0] x1 + [0]
           c_28() = [0]
           c_29(x1) = [0] x1 + [0]
           isList^#(x1) = [0] x1 + [0]
           c_30(x1) = [0] x1 + [0]
           c_31(x1) = [0] x1 + [0]
           c_32(x1) = [0] x1 + [0]
           c_33(x1) = [0] x1 + [0]
           isPal^#(x1) = [0] x1 + [0]
           c_34() = [0]
           c_35() = [0]
           c_36() = [0]
           c_37() = [0]
           c_38() = [0]
           c_39(x1) = [0] x1 + [0]
           c_40(x1) = [0] x1 + [0]
           c_41(x1) = [0] x1 + [0]
           c_42(x1) = [0] x1 + [0]
           c_43(x1) = [0] x1 + [0]
           c_44(x1) = [0] x1 + [0]
           c_45(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_46(x1) = [0] x1 + [0]
           c_47(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {isQid^#(ok(X)) -> c_43(isQid^#(X))}
            Weak Rules: {active^#(isNePal(V)) -> c_10(isQid^#(V))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {isQid^#(ok(X)) -> c_43(isQid^#(X))}
            and weakly orienting the rules
            {active^#(isNePal(V)) -> c_10(isQid^#(V))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {isQid^#(ok(X)) -> c_43(isQid^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [0] x1 + [0] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [1] x1 + [1]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [1] x1 + [3]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  isQid^#(ok(X)) -> c_43(isQid^#(X))
                 , active^#(isNePal(V)) -> c_10(isQid^#(V))}
            
            Details:         
              The given problem does not contain any strict rules
      
   39)
      {active^#(isQid(a())) -> c_14()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isList(x1) = [0] x1 + [0]
           isNeList(x1) = [0] x1 + [0]
           isQid(x1) = [0] x1 + [0]
           isNePal(x1) = [0] x1 + [0]
           isPal(x1) = [0] x1 + [0]
           a() = [0]
           e() = [0]
           i() = [0]
           o() = [0]
           u() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           isNeList^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_7(x1) = [0] x1 + [0]
           isQid^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_13() = [0]
           c_14() = [0]
           c_15() = [0]
           c_16() = [0]
           c_17() = [0]
           c_18() = [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
           c_23(x1) = [0] x1 + [0]
           c_24(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_25(x1) = [0] x1 + [0]
           c_26() = [0]
           c_27(x1) = [0] x1 + [0]
           c_28() = [0]
           c_29(x1) = [0] x1 + [0]
           isList^#(x1) = [0] x1 + [0]
           c_30(x1) = [0] x1 + [0]
           c_31(x1) = [0] x1 + [0]
           c_32(x1) = [0] x1 + [0]
           c_33(x1) = [0] x1 + [0]
           isPal^#(x1) = [0] x1 + [0]
           c_34() = [0]
           c_35() = [0]
           c_36() = [0]
           c_37() = [0]
           c_38() = [0]
           c_39(x1) = [0] x1 + [0]
           c_40(x1) = [0] x1 + [0]
           c_41(x1) = [0] x1 + [0]
           c_42(x1) = [0] x1 + [0]
           c_43(x1) = [0] x1 + [0]
           c_44(x1) = [0] x1 + [0]
           c_45(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_46(x1) = [0] x1 + [0]
           c_47(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(isQid(a())) -> c_14()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(isQid(a())) -> c_14()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(isQid(a())) -> c_14()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [0] x1 + [0] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(isQid(a())) -> c_14()}
            
            Details:         
              The given problem does not contain any strict rules
      
   40)
      {active^#(isList(V)) -> c_4(isNeList^#(V))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isList(x1) = [0] x1 + [0]
           isNeList(x1) = [0] x1 + [0]
           isQid(x1) = [0] x1 + [0]
           isNePal(x1) = [0] x1 + [0]
           isPal(x1) = [0] x1 + [0]
           a() = [0]
           e() = [0]
           i() = [0]
           o() = [0]
           u() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           isNeList^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_7(x1) = [0] x1 + [0]
           isQid^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_13() = [0]
           c_14() = [0]
           c_15() = [0]
           c_16() = [0]
           c_17() = [0]
           c_18() = [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
           c_23(x1) = [0] x1 + [0]
           c_24(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_25(x1) = [0] x1 + [0]
           c_26() = [0]
           c_27(x1) = [0] x1 + [0]
           c_28() = [0]
           c_29(x1) = [0] x1 + [0]
           isList^#(x1) = [0] x1 + [0]
           c_30(x1) = [0] x1 + [0]
           c_31(x1) = [0] x1 + [0]
           c_32(x1) = [0] x1 + [0]
           c_33(x1) = [0] x1 + [0]
           isPal^#(x1) = [0] x1 + [0]
           c_34() = [0]
           c_35() = [0]
           c_36() = [0]
           c_37() = [0]
           c_38() = [0]
           c_39(x1) = [0] x1 + [0]
           c_40(x1) = [0] x1 + [0]
           c_41(x1) = [0] x1 + [0]
           c_42(x1) = [0] x1 + [0]
           c_43(x1) = [0] x1 + [0]
           c_44(x1) = [0] x1 + [0]
           c_45(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_46(x1) = [0] x1 + [0]
           c_47(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(isList(V)) -> c_4(isNeList^#(V))}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(isList(V)) -> c_4(isNeList^#(V))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(isList(V)) -> c_4(isNeList^#(V))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [0] x1 + [0] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
                  isNeList^#(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(isList(V)) -> c_4(isNeList^#(V))}
            
            Details:         
              The given problem does not contain any strict rules
      
   41)
      {active^#(isPal(nil())) -> c_13()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isList(x1) = [0] x1 + [0]
           isNeList(x1) = [0] x1 + [0]
           isQid(x1) = [0] x1 + [0]
           isNePal(x1) = [0] x1 + [0]
           isPal(x1) = [0] x1 + [0]
           a() = [0]
           e() = [0]
           i() = [0]
           o() = [0]
           u() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           isNeList^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_7(x1) = [0] x1 + [0]
           isQid^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_13() = [0]
           c_14() = [0]
           c_15() = [0]
           c_16() = [0]
           c_17() = [0]
           c_18() = [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
           c_23(x1) = [0] x1 + [0]
           c_24(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_25(x1) = [0] x1 + [0]
           c_26() = [0]
           c_27(x1) = [0] x1 + [0]
           c_28() = [0]
           c_29(x1) = [0] x1 + [0]
           isList^#(x1) = [0] x1 + [0]
           c_30(x1) = [0] x1 + [0]
           c_31(x1) = [0] x1 + [0]
           c_32(x1) = [0] x1 + [0]
           c_33(x1) = [0] x1 + [0]
           isPal^#(x1) = [0] x1 + [0]
           c_34() = [0]
           c_35() = [0]
           c_36() = [0]
           c_37() = [0]
           c_38() = [0]
           c_39(x1) = [0] x1 + [0]
           c_40(x1) = [0] x1 + [0]
           c_41(x1) = [0] x1 + [0]
           c_42(x1) = [0] x1 + [0]
           c_43(x1) = [0] x1 + [0]
           c_44(x1) = [0] x1 + [0]
           c_45(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_46(x1) = [0] x1 + [0]
           c_47(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(isPal(nil())) -> c_13()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(isPal(nil())) -> c_13()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(isPal(nil())) -> c_13()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [0] x1 + [0] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(isPal(nil())) -> c_13()}
            
            Details:         
              The given problem does not contain any strict rules
      
   42)
      {active^#(isNeList(V)) -> c_7(isQid^#(V))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isList(x1) = [0] x1 + [0]
           isNeList(x1) = [0] x1 + [0]
           isQid(x1) = [0] x1 + [0]
           isNePal(x1) = [0] x1 + [0]
           isPal(x1) = [0] x1 + [0]
           a() = [0]
           e() = [0]
           i() = [0]
           o() = [0]
           u() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           isNeList^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_7(x1) = [0] x1 + [0]
           isQid^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_13() = [0]
           c_14() = [0]
           c_15() = [0]
           c_16() = [0]
           c_17() = [0]
           c_18() = [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
           c_23(x1) = [0] x1 + [0]
           c_24(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_25(x1) = [0] x1 + [0]
           c_26() = [0]
           c_27(x1) = [0] x1 + [0]
           c_28() = [0]
           c_29(x1) = [0] x1 + [0]
           isList^#(x1) = [0] x1 + [0]
           c_30(x1) = [0] x1 + [0]
           c_31(x1) = [0] x1 + [0]
           c_32(x1) = [0] x1 + [0]
           c_33(x1) = [0] x1 + [0]
           isPal^#(x1) = [0] x1 + [0]
           c_34() = [0]
           c_35() = [0]
           c_36() = [0]
           c_37() = [0]
           c_38() = [0]
           c_39(x1) = [0] x1 + [0]
           c_40(x1) = [0] x1 + [0]
           c_41(x1) = [0] x1 + [0]
           c_42(x1) = [0] x1 + [0]
           c_43(x1) = [0] x1 + [0]
           c_44(x1) = [0] x1 + [0]
           c_45(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_46(x1) = [0] x1 + [0]
           c_47(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(isNeList(V)) -> c_7(isQid^#(V))}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(isNeList(V)) -> c_7(isQid^#(V))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(isNeList(V)) -> c_7(isQid^#(V))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [0] x1 + [0] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [1] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [1] x1 + [0]
                  isQid^#(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(isNeList(V)) -> c_7(isQid^#(V))}
            
            Details:         
              The given problem does not contain any strict rules
      
   43)
      {active^#(isList(nil())) -> c_5()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isList(x1) = [0] x1 + [0]
           isNeList(x1) = [0] x1 + [0]
           isQid(x1) = [0] x1 + [0]
           isNePal(x1) = [0] x1 + [0]
           isPal(x1) = [0] x1 + [0]
           a() = [0]
           e() = [0]
           i() = [0]
           o() = [0]
           u() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           isNeList^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_7(x1) = [0] x1 + [0]
           isQid^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_13() = [0]
           c_14() = [0]
           c_15() = [0]
           c_16() = [0]
           c_17() = [0]
           c_18() = [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
           c_23(x1) = [0] x1 + [0]
           c_24(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_25(x1) = [0] x1 + [0]
           c_26() = [0]
           c_27(x1) = [0] x1 + [0]
           c_28() = [0]
           c_29(x1) = [0] x1 + [0]
           isList^#(x1) = [0] x1 + [0]
           c_30(x1) = [0] x1 + [0]
           c_31(x1) = [0] x1 + [0]
           c_32(x1) = [0] x1 + [0]
           c_33(x1) = [0] x1 + [0]
           isPal^#(x1) = [0] x1 + [0]
           c_34() = [0]
           c_35() = [0]
           c_36() = [0]
           c_37() = [0]
           c_38() = [0]
           c_39(x1) = [0] x1 + [0]
           c_40(x1) = [0] x1 + [0]
           c_41(x1) = [0] x1 + [0]
           c_42(x1) = [0] x1 + [0]
           c_43(x1) = [0] x1 + [0]
           c_44(x1) = [0] x1 + [0]
           c_45(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_46(x1) = [0] x1 + [0]
           c_47(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(isList(nil())) -> c_5()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(isList(nil())) -> c_5()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(isList(nil())) -> c_5()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [0] x1 + [0] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [1] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(isList(nil())) -> c_5()}
            
            Details:         
              The given problem does not contain any strict rules
      
   44)
      {active^#(isNePal(V)) -> c_10(isQid^#(V))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isList(x1) = [0] x1 + [0]
           isNeList(x1) = [0] x1 + [0]
           isQid(x1) = [0] x1 + [0]
           isNePal(x1) = [0] x1 + [0]
           isPal(x1) = [0] x1 + [0]
           a() = [0]
           e() = [0]
           i() = [0]
           o() = [0]
           u() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           isNeList^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_7(x1) = [0] x1 + [0]
           isQid^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_13() = [0]
           c_14() = [0]
           c_15() = [0]
           c_16() = [0]
           c_17() = [0]
           c_18() = [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
           c_23(x1) = [0] x1 + [0]
           c_24(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_25(x1) = [0] x1 + [0]
           c_26() = [0]
           c_27(x1) = [0] x1 + [0]
           c_28() = [0]
           c_29(x1) = [0] x1 + [0]
           isList^#(x1) = [0] x1 + [0]
           c_30(x1) = [0] x1 + [0]
           c_31(x1) = [0] x1 + [0]
           c_32(x1) = [0] x1 + [0]
           c_33(x1) = [0] x1 + [0]
           isPal^#(x1) = [0] x1 + [0]
           c_34() = [0]
           c_35() = [0]
           c_36() = [0]
           c_37() = [0]
           c_38() = [0]
           c_39(x1) = [0] x1 + [0]
           c_40(x1) = [0] x1 + [0]
           c_41(x1) = [0] x1 + [0]
           c_42(x1) = [0] x1 + [0]
           c_43(x1) = [0] x1 + [0]
           c_44(x1) = [0] x1 + [0]
           c_45(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_46(x1) = [0] x1 + [0]
           c_47(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(isNePal(V)) -> c_10(isQid^#(V))}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(isNePal(V)) -> c_10(isQid^#(V))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(isNePal(V)) -> c_10(isQid^#(V))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [0] x1 + [0] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [1] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(isNePal(V)) -> c_10(isQid^#(V))}
            
            Details:         
              The given problem does not contain any strict rules
      
   45)
      {active^#(isPal(V)) -> c_12(isNePal^#(V))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isList(x1) = [0] x1 + [0]
           isNeList(x1) = [0] x1 + [0]
           isQid(x1) = [0] x1 + [0]
           isNePal(x1) = [0] x1 + [0]
           isPal(x1) = [0] x1 + [0]
           a() = [0]
           e() = [0]
           i() = [0]
           o() = [0]
           u() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           isNeList^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_7(x1) = [0] x1 + [0]
           isQid^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_13() = [0]
           c_14() = [0]
           c_15() = [0]
           c_16() = [0]
           c_17() = [0]
           c_18() = [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
           c_23(x1) = [0] x1 + [0]
           c_24(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_25(x1) = [0] x1 + [0]
           c_26() = [0]
           c_27(x1) = [0] x1 + [0]
           c_28() = [0]
           c_29(x1) = [0] x1 + [0]
           isList^#(x1) = [0] x1 + [0]
           c_30(x1) = [0] x1 + [0]
           c_31(x1) = [0] x1 + [0]
           c_32(x1) = [0] x1 + [0]
           c_33(x1) = [0] x1 + [0]
           isPal^#(x1) = [0] x1 + [0]
           c_34() = [0]
           c_35() = [0]
           c_36() = [0]
           c_37() = [0]
           c_38() = [0]
           c_39(x1) = [0] x1 + [0]
           c_40(x1) = [0] x1 + [0]
           c_41(x1) = [0] x1 + [0]
           c_42(x1) = [0] x1 + [0]
           c_43(x1) = [0] x1 + [0]
           c_44(x1) = [0] x1 + [0]
           c_45(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_46(x1) = [0] x1 + [0]
           c_47(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(isPal(V)) -> c_12(isNePal^#(V))}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(isPal(V)) -> c_12(isNePal^#(V))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(isPal(V)) -> c_12(isNePal^#(V))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [0] x1 + [0] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [1] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  isNePal^#(x1) = [1] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(isPal(V)) -> c_12(isNePal^#(V))}
            
            Details:         
              The given problem does not contain any strict rules
      
   46)
      {active^#(isQid(e())) -> c_15()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isList(x1) = [0] x1 + [0]
           isNeList(x1) = [0] x1 + [0]
           isQid(x1) = [0] x1 + [0]
           isNePal(x1) = [0] x1 + [0]
           isPal(x1) = [0] x1 + [0]
           a() = [0]
           e() = [0]
           i() = [0]
           o() = [0]
           u() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           isNeList^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_7(x1) = [0] x1 + [0]
           isQid^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_13() = [0]
           c_14() = [0]
           c_15() = [0]
           c_16() = [0]
           c_17() = [0]
           c_18() = [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
           c_23(x1) = [0] x1 + [0]
           c_24(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_25(x1) = [0] x1 + [0]
           c_26() = [0]
           c_27(x1) = [0] x1 + [0]
           c_28() = [0]
           c_29(x1) = [0] x1 + [0]
           isList^#(x1) = [0] x1 + [0]
           c_30(x1) = [0] x1 + [0]
           c_31(x1) = [0] x1 + [0]
           c_32(x1) = [0] x1 + [0]
           c_33(x1) = [0] x1 + [0]
           isPal^#(x1) = [0] x1 + [0]
           c_34() = [0]
           c_35() = [0]
           c_36() = [0]
           c_37() = [0]
           c_38() = [0]
           c_39(x1) = [0] x1 + [0]
           c_40(x1) = [0] x1 + [0]
           c_41(x1) = [0] x1 + [0]
           c_42(x1) = [0] x1 + [0]
           c_43(x1) = [0] x1 + [0]
           c_44(x1) = [0] x1 + [0]
           c_45(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_46(x1) = [0] x1 + [0]
           c_47(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(isQid(e())) -> c_15()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(isQid(e())) -> c_15()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(isQid(e())) -> c_15()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [0] x1 + [0] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(isQid(e())) -> c_15()}
            
            Details:         
              The given problem does not contain any strict rules
      
   47)
      {active^#(isQid(i())) -> c_16()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isList(x1) = [0] x1 + [0]
           isNeList(x1) = [0] x1 + [0]
           isQid(x1) = [0] x1 + [0]
           isNePal(x1) = [0] x1 + [0]
           isPal(x1) = [0] x1 + [0]
           a() = [0]
           e() = [0]
           i() = [0]
           o() = [0]
           u() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           isNeList^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_7(x1) = [0] x1 + [0]
           isQid^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_13() = [0]
           c_14() = [0]
           c_15() = [0]
           c_16() = [0]
           c_17() = [0]
           c_18() = [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
           c_23(x1) = [0] x1 + [0]
           c_24(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_25(x1) = [0] x1 + [0]
           c_26() = [0]
           c_27(x1) = [0] x1 + [0]
           c_28() = [0]
           c_29(x1) = [0] x1 + [0]
           isList^#(x1) = [0] x1 + [0]
           c_30(x1) = [0] x1 + [0]
           c_31(x1) = [0] x1 + [0]
           c_32(x1) = [0] x1 + [0]
           c_33(x1) = [0] x1 + [0]
           isPal^#(x1) = [0] x1 + [0]
           c_34() = [0]
           c_35() = [0]
           c_36() = [0]
           c_37() = [0]
           c_38() = [0]
           c_39(x1) = [0] x1 + [0]
           c_40(x1) = [0] x1 + [0]
           c_41(x1) = [0] x1 + [0]
           c_42(x1) = [0] x1 + [0]
           c_43(x1) = [0] x1 + [0]
           c_44(x1) = [0] x1 + [0]
           c_45(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_46(x1) = [0] x1 + [0]
           c_47(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(isQid(i())) -> c_16()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(isQid(i())) -> c_16()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(isQid(i())) -> c_16()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [0] x1 + [0] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(isQid(i())) -> c_16()}
            
            Details:         
              The given problem does not contain any strict rules
      
   48)
      {active^#(isQid(u())) -> c_18()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isList(x1) = [0] x1 + [0]
           isNeList(x1) = [0] x1 + [0]
           isQid(x1) = [0] x1 + [0]
           isNePal(x1) = [0] x1 + [0]
           isPal(x1) = [0] x1 + [0]
           a() = [0]
           e() = [0]
           i() = [0]
           o() = [0]
           u() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           isNeList^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_7(x1) = [0] x1 + [0]
           isQid^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_13() = [0]
           c_14() = [0]
           c_15() = [0]
           c_16() = [0]
           c_17() = [0]
           c_18() = [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
           c_23(x1) = [0] x1 + [0]
           c_24(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_25(x1) = [0] x1 + [0]
           c_26() = [0]
           c_27(x1) = [0] x1 + [0]
           c_28() = [0]
           c_29(x1) = [0] x1 + [0]
           isList^#(x1) = [0] x1 + [0]
           c_30(x1) = [0] x1 + [0]
           c_31(x1) = [0] x1 + [0]
           c_32(x1) = [0] x1 + [0]
           c_33(x1) = [0] x1 + [0]
           isPal^#(x1) = [0] x1 + [0]
           c_34() = [0]
           c_35() = [0]
           c_36() = [0]
           c_37() = [0]
           c_38() = [0]
           c_39(x1) = [0] x1 + [0]
           c_40(x1) = [0] x1 + [0]
           c_41(x1) = [0] x1 + [0]
           c_42(x1) = [0] x1 + [0]
           c_43(x1) = [0] x1 + [0]
           c_44(x1) = [0] x1 + [0]
           c_45(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_46(x1) = [0] x1 + [0]
           c_47(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(isQid(u())) -> c_18()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(isQid(u())) -> c_18()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(isQid(u())) -> c_18()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [0] x1 + [0] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(isQid(u())) -> c_18()}
            
            Details:         
              The given problem does not contain any strict rules
      
   49)
      {active^#(isQid(o())) -> c_17()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isList(x1) = [0] x1 + [0]
           isNeList(x1) = [0] x1 + [0]
           isQid(x1) = [0] x1 + [0]
           isNePal(x1) = [0] x1 + [0]
           isPal(x1) = [0] x1 + [0]
           a() = [0]
           e() = [0]
           i() = [0]
           o() = [0]
           u() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           isNeList^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_7(x1) = [0] x1 + [0]
           isQid^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_13() = [0]
           c_14() = [0]
           c_15() = [0]
           c_16() = [0]
           c_17() = [0]
           c_18() = [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
           c_23(x1) = [0] x1 + [0]
           c_24(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_25(x1) = [0] x1 + [0]
           c_26() = [0]
           c_27(x1) = [0] x1 + [0]
           c_28() = [0]
           c_29(x1) = [0] x1 + [0]
           isList^#(x1) = [0] x1 + [0]
           c_30(x1) = [0] x1 + [0]
           c_31(x1) = [0] x1 + [0]
           c_32(x1) = [0] x1 + [0]
           c_33(x1) = [0] x1 + [0]
           isPal^#(x1) = [0] x1 + [0]
           c_34() = [0]
           c_35() = [0]
           c_36() = [0]
           c_37() = [0]
           c_38() = [0]
           c_39(x1) = [0] x1 + [0]
           c_40(x1) = [0] x1 + [0]
           c_41(x1) = [0] x1 + [0]
           c_42(x1) = [0] x1 + [0]
           c_43(x1) = [0] x1 + [0]
           c_44(x1) = [0] x1 + [0]
           c_45(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_46(x1) = [0] x1 + [0]
           c_47(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(isQid(o())) -> c_17()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(isQid(o())) -> c_17()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(isQid(o())) -> c_17()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [0] x1 + [0] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [1] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(isQid(o())) -> c_17()}
            
            Details:         
              The given problem does not contain any strict rules
      
   50)
      {proper^#(nil()) -> c_26()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isList(x1) = [0] x1 + [0]
           isNeList(x1) = [0] x1 + [0]
           isQid(x1) = [0] x1 + [0]
           isNePal(x1) = [0] x1 + [0]
           isPal(x1) = [0] x1 + [0]
           a() = [0]
           e() = [0]
           i() = [0]
           o() = [0]
           u() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           isNeList^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_7(x1) = [0] x1 + [0]
           isQid^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_13() = [0]
           c_14() = [0]
           c_15() = [0]
           c_16() = [0]
           c_17() = [0]
           c_18() = [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
           c_23(x1) = [0] x1 + [0]
           c_24(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_25(x1) = [0] x1 + [0]
           c_26() = [0]
           c_27(x1) = [0] x1 + [0]
           c_28() = [0]
           c_29(x1) = [0] x1 + [0]
           isList^#(x1) = [0] x1 + [0]
           c_30(x1) = [0] x1 + [0]
           c_31(x1) = [0] x1 + [0]
           c_32(x1) = [0] x1 + [0]
           c_33(x1) = [0] x1 + [0]
           isPal^#(x1) = [0] x1 + [0]
           c_34() = [0]
           c_35() = [0]
           c_36() = [0]
           c_37() = [0]
           c_38() = [0]
           c_39(x1) = [0] x1 + [0]
           c_40(x1) = [0] x1 + [0]
           c_41(x1) = [0] x1 + [0]
           c_42(x1) = [0] x1 + [0]
           c_43(x1) = [0] x1 + [0]
           c_44(x1) = [0] x1 + [0]
           c_45(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_46(x1) = [0] x1 + [0]
           c_47(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {proper^#(nil()) -> c_26()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(nil()) -> c_26()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(nil()) -> c_26()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [0] x1 + [0] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {proper^#(nil()) -> c_26()}
            
            Details:         
              The given problem does not contain any strict rules
      
   51)
      {proper^#(e()) -> c_35()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isList(x1) = [0] x1 + [0]
           isNeList(x1) = [0] x1 + [0]
           isQid(x1) = [0] x1 + [0]
           isNePal(x1) = [0] x1 + [0]
           isPal(x1) = [0] x1 + [0]
           a() = [0]
           e() = [0]
           i() = [0]
           o() = [0]
           u() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           isNeList^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_7(x1) = [0] x1 + [0]
           isQid^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_13() = [0]
           c_14() = [0]
           c_15() = [0]
           c_16() = [0]
           c_17() = [0]
           c_18() = [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
           c_23(x1) = [0] x1 + [0]
           c_24(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_25(x1) = [0] x1 + [0]
           c_26() = [0]
           c_27(x1) = [0] x1 + [0]
           c_28() = [0]
           c_29(x1) = [0] x1 + [0]
           isList^#(x1) = [0] x1 + [0]
           c_30(x1) = [0] x1 + [0]
           c_31(x1) = [0] x1 + [0]
           c_32(x1) = [0] x1 + [0]
           c_33(x1) = [0] x1 + [0]
           isPal^#(x1) = [0] x1 + [0]
           c_34() = [0]
           c_35() = [0]
           c_36() = [0]
           c_37() = [0]
           c_38() = [0]
           c_39(x1) = [0] x1 + [0]
           c_40(x1) = [0] x1 + [0]
           c_41(x1) = [0] x1 + [0]
           c_42(x1) = [0] x1 + [0]
           c_43(x1) = [0] x1 + [0]
           c_44(x1) = [0] x1 + [0]
           c_45(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_46(x1) = [0] x1 + [0]
           c_47(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {proper^#(e()) -> c_35()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(e()) -> c_35()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(e()) -> c_35()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [0] x1 + [0] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {proper^#(e()) -> c_35()}
            
            Details:         
              The given problem does not contain any strict rules
      
   52)
      {proper^#(a()) -> c_34()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isList(x1) = [0] x1 + [0]
           isNeList(x1) = [0] x1 + [0]
           isQid(x1) = [0] x1 + [0]
           isNePal(x1) = [0] x1 + [0]
           isPal(x1) = [0] x1 + [0]
           a() = [0]
           e() = [0]
           i() = [0]
           o() = [0]
           u() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           isNeList^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_7(x1) = [0] x1 + [0]
           isQid^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_13() = [0]
           c_14() = [0]
           c_15() = [0]
           c_16() = [0]
           c_17() = [0]
           c_18() = [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
           c_23(x1) = [0] x1 + [0]
           c_24(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_25(x1) = [0] x1 + [0]
           c_26() = [0]
           c_27(x1) = [0] x1 + [0]
           c_28() = [0]
           c_29(x1) = [0] x1 + [0]
           isList^#(x1) = [0] x1 + [0]
           c_30(x1) = [0] x1 + [0]
           c_31(x1) = [0] x1 + [0]
           c_32(x1) = [0] x1 + [0]
           c_33(x1) = [0] x1 + [0]
           isPal^#(x1) = [0] x1 + [0]
           c_34() = [0]
           c_35() = [0]
           c_36() = [0]
           c_37() = [0]
           c_38() = [0]
           c_39(x1) = [0] x1 + [0]
           c_40(x1) = [0] x1 + [0]
           c_41(x1) = [0] x1 + [0]
           c_42(x1) = [0] x1 + [0]
           c_43(x1) = [0] x1 + [0]
           c_44(x1) = [0] x1 + [0]
           c_45(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_46(x1) = [0] x1 + [0]
           c_47(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {proper^#(a()) -> c_34()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(a()) -> c_34()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(a()) -> c_34()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [0] x1 + [0] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {proper^#(a()) -> c_34()}
            
            Details:         
              The given problem does not contain any strict rules
      
   53)
      {proper^#(o()) -> c_37()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isList(x1) = [0] x1 + [0]
           isNeList(x1) = [0] x1 + [0]
           isQid(x1) = [0] x1 + [0]
           isNePal(x1) = [0] x1 + [0]
           isPal(x1) = [0] x1 + [0]
           a() = [0]
           e() = [0]
           i() = [0]
           o() = [0]
           u() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           isNeList^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_7(x1) = [0] x1 + [0]
           isQid^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_13() = [0]
           c_14() = [0]
           c_15() = [0]
           c_16() = [0]
           c_17() = [0]
           c_18() = [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
           c_23(x1) = [0] x1 + [0]
           c_24(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_25(x1) = [0] x1 + [0]
           c_26() = [0]
           c_27(x1) = [0] x1 + [0]
           c_28() = [0]
           c_29(x1) = [0] x1 + [0]
           isList^#(x1) = [0] x1 + [0]
           c_30(x1) = [0] x1 + [0]
           c_31(x1) = [0] x1 + [0]
           c_32(x1) = [0] x1 + [0]
           c_33(x1) = [0] x1 + [0]
           isPal^#(x1) = [0] x1 + [0]
           c_34() = [0]
           c_35() = [0]
           c_36() = [0]
           c_37() = [0]
           c_38() = [0]
           c_39(x1) = [0] x1 + [0]
           c_40(x1) = [0] x1 + [0]
           c_41(x1) = [0] x1 + [0]
           c_42(x1) = [0] x1 + [0]
           c_43(x1) = [0] x1 + [0]
           c_44(x1) = [0] x1 + [0]
           c_45(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_46(x1) = [0] x1 + [0]
           c_47(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {proper^#(o()) -> c_37()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(o()) -> c_37()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(o()) -> c_37()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [0] x1 + [0] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {proper^#(o()) -> c_37()}
            
            Details:         
              The given problem does not contain any strict rules
      
   54)
      {proper^#(tt()) -> c_28()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isList(x1) = [0] x1 + [0]
           isNeList(x1) = [0] x1 + [0]
           isQid(x1) = [0] x1 + [0]
           isNePal(x1) = [0] x1 + [0]
           isPal(x1) = [0] x1 + [0]
           a() = [0]
           e() = [0]
           i() = [0]
           o() = [0]
           u() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           isNeList^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_7(x1) = [0] x1 + [0]
           isQid^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_13() = [0]
           c_14() = [0]
           c_15() = [0]
           c_16() = [0]
           c_17() = [0]
           c_18() = [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
           c_23(x1) = [0] x1 + [0]
           c_24(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_25(x1) = [0] x1 + [0]
           c_26() = [0]
           c_27(x1) = [0] x1 + [0]
           c_28() = [0]
           c_29(x1) = [0] x1 + [0]
           isList^#(x1) = [0] x1 + [0]
           c_30(x1) = [0] x1 + [0]
           c_31(x1) = [0] x1 + [0]
           c_32(x1) = [0] x1 + [0]
           c_33(x1) = [0] x1 + [0]
           isPal^#(x1) = [0] x1 + [0]
           c_34() = [0]
           c_35() = [0]
           c_36() = [0]
           c_37() = [0]
           c_38() = [0]
           c_39(x1) = [0] x1 + [0]
           c_40(x1) = [0] x1 + [0]
           c_41(x1) = [0] x1 + [0]
           c_42(x1) = [0] x1 + [0]
           c_43(x1) = [0] x1 + [0]
           c_44(x1) = [0] x1 + [0]
           c_45(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_46(x1) = [0] x1 + [0]
           c_47(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {proper^#(tt()) -> c_28()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(tt()) -> c_28()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(tt()) -> c_28()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [0] x1 + [0] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {proper^#(tt()) -> c_28()}
            
            Details:         
              The given problem does not contain any strict rules
      
   55)
      {proper^#(i()) -> c_36()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isList(x1) = [0] x1 + [0]
           isNeList(x1) = [0] x1 + [0]
           isQid(x1) = [0] x1 + [0]
           isNePal(x1) = [0] x1 + [0]
           isPal(x1) = [0] x1 + [0]
           a() = [0]
           e() = [0]
           i() = [0]
           o() = [0]
           u() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           isNeList^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_7(x1) = [0] x1 + [0]
           isQid^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_13() = [0]
           c_14() = [0]
           c_15() = [0]
           c_16() = [0]
           c_17() = [0]
           c_18() = [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
           c_23(x1) = [0] x1 + [0]
           c_24(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_25(x1) = [0] x1 + [0]
           c_26() = [0]
           c_27(x1) = [0] x1 + [0]
           c_28() = [0]
           c_29(x1) = [0] x1 + [0]
           isList^#(x1) = [0] x1 + [0]
           c_30(x1) = [0] x1 + [0]
           c_31(x1) = [0] x1 + [0]
           c_32(x1) = [0] x1 + [0]
           c_33(x1) = [0] x1 + [0]
           isPal^#(x1) = [0] x1 + [0]
           c_34() = [0]
           c_35() = [0]
           c_36() = [0]
           c_37() = [0]
           c_38() = [0]
           c_39(x1) = [0] x1 + [0]
           c_40(x1) = [0] x1 + [0]
           c_41(x1) = [0] x1 + [0]
           c_42(x1) = [0] x1 + [0]
           c_43(x1) = [0] x1 + [0]
           c_44(x1) = [0] x1 + [0]
           c_45(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_46(x1) = [0] x1 + [0]
           c_47(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {proper^#(i()) -> c_36()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(i()) -> c_36()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(i()) -> c_36()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [0] x1 + [0] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {proper^#(i()) -> c_36()}
            
            Details:         
              The given problem does not contain any strict rules
      
   56)
      {proper^#(u()) -> c_38()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isList(x1) = [0] x1 + [0]
           isNeList(x1) = [0] x1 + [0]
           isQid(x1) = [0] x1 + [0]
           isNePal(x1) = [0] x1 + [0]
           isPal(x1) = [0] x1 + [0]
           a() = [0]
           e() = [0]
           i() = [0]
           o() = [0]
           u() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           isNeList^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_7(x1) = [0] x1 + [0]
           isQid^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_13() = [0]
           c_14() = [0]
           c_15() = [0]
           c_16() = [0]
           c_17() = [0]
           c_18() = [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
           c_23(x1) = [0] x1 + [0]
           c_24(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_25(x1) = [0] x1 + [0]
           c_26() = [0]
           c_27(x1) = [0] x1 + [0]
           c_28() = [0]
           c_29(x1) = [0] x1 + [0]
           isList^#(x1) = [0] x1 + [0]
           c_30(x1) = [0] x1 + [0]
           c_31(x1) = [0] x1 + [0]
           c_32(x1) = [0] x1 + [0]
           c_33(x1) = [0] x1 + [0]
           isPal^#(x1) = [0] x1 + [0]
           c_34() = [0]
           c_35() = [0]
           c_36() = [0]
           c_37() = [0]
           c_38() = [0]
           c_39(x1) = [0] x1 + [0]
           c_40(x1) = [0] x1 + [0]
           c_41(x1) = [0] x1 + [0]
           c_42(x1) = [0] x1 + [0]
           c_43(x1) = [0] x1 + [0]
           c_44(x1) = [0] x1 + [0]
           c_45(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_46(x1) = [0] x1 + [0]
           c_47(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {proper^#(u()) -> c_38()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(u()) -> c_38()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(u()) -> c_38()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [0] x1 + [0] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isList(x1) = [0] x1 + [0]
                  isNeList(x1) = [0] x1 + [0]
                  isQid(x1) = [0] x1 + [0]
                  isNePal(x1) = [0] x1 + [0]
                  isPal(x1) = [0] x1 + [0]
                  a() = [0]
                  e() = [0]
                  i() = [0]
                  o() = [0]
                  u() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [0] x1 + [0]
                  isNeList^#(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_7(x1) = [0] x1 + [0]
                  isQid^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_13() = [0]
                  c_14() = [0]
                  c_15() = [0]
                  c_16() = [0]
                  c_17() = [0]
                  c_18() = [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
                  c_23(x1) = [0] x1 + [0]
                  c_24(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_25(x1) = [0] x1 + [0]
                  c_26() = [0]
                  c_27(x1) = [0] x1 + [0]
                  c_28() = [0]
                  c_29(x1) = [0] x1 + [0]
                  isList^#(x1) = [0] x1 + [0]
                  c_30(x1) = [0] x1 + [0]
                  c_31(x1) = [0] x1 + [0]
                  c_32(x1) = [0] x1 + [0]
                  c_33(x1) = [0] x1 + [0]
                  isPal^#(x1) = [0] x1 + [0]
                  c_34() = [0]
                  c_35() = [0]
                  c_36() = [0]
                  c_37() = [0]
                  c_38() = [0]
                  c_39(x1) = [0] x1 + [0]
                  c_40(x1) = [0] x1 + [0]
                  c_41(x1) = [0] x1 + [0]
                  c_42(x1) = [0] x1 + [0]
                  c_43(x1) = [0] x1 + [0]
                  c_44(x1) = [0] x1 + [0]
                  c_45(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_46(x1) = [0] x1 + [0]
                  c_47(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {proper^#(u()) -> c_38()}
            
            Details:         
              The given problem does not contain any strict rules